ARRAVT078

Progress on ARRA-funded Facility & Capability Upgrades for the Battery Abuse/Safety Laboratory

William A. Averill

Christopher J. Orendorff

Thomas F. Wunsch

Advanced Power Sources R & D
Sandia National Laboratories

9 May 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start
 15-Apr-2011
- Project end
 30-Sep-2012

Barriers & Risks

- Substantial building modifications
- Construction site "turned over to contractors"
- Limited testing activity
- · Site returned to "owners"
- ES&H concerns
 - Safety
 - Industrial Hyiene
 - RCRA

Budget

- \$4200K (100% ARRA)
- 100% Funded FY10

Partners

- CH2M Hill Architect Engineers (Englewood, CO)
- Engineering Constructors Inc. –
 General Contractor (Albuquerque, NM)
- JB Henderson Mechanical Contractor (Albuquerque, NM)
- Del Rio Enterprises Electrical Contractor (Albuquerque, NM)
- Bridgers & Paxton Consulting Engineers (Albuquerque, NM)

Objectives/Relevance

The SNL Battery Abuse/Safety Test Laboratory (BATLab) ARRA-funded Capabilities Upgrade Project provides support for those goals & objectives provided in the DOE Energy Efficiency & Renewable Energy Vehicle Technologies Program Multi-Year Program Plan

[http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp_2011-2015.pdf]

^aChallenges and Barriers (pp 2.1-2 - 2.1-3), specifically:

¹ Abuse Tolerance, Reliability and Ruggedness - Section D. (p2.1-3)

The BATLab Upgrades will increase capability by increasing:

- □Power (>50KW)
- □Voltage (>400V)
- □Current (>600A)
- ■Test throughput
- Test data reliability
 - replace obsolete equipment & instruments
 - provide simultaneous test capability
 - implement current A/V & data capture standards
 - install platforms with standardized processing operations & data formats
 - Safety

For tested cells, modules and packs.

Approach:

The ARRA-funded BATLab Upgrade Project will meet EERE-VT Multi-Year Program Plan Challenges & Barriers by:

- ✓ The acquisition of modern equipment & instrumentation
- ✓ Implementation of standard test protocols & data processing
- ✓ Ugrade the physical plant (BATLab) to provide:
 - Available Power :
 - 480VAC 3Ф 60A (4X)
 - 208VAC 3Ф 60A (4X)
 - 208VAC 1Ф 30A (8X)
 - 110VAC 1Φ 20A (26X)--6 remotely switched
 - HVAC:
 - Increase Air Evacuation Volume & Scrubbing Capacity
 - Increase Air Evacuation Service Points (8 ⇒ 14)
 Increase Make-Up Air Capacity
 - Equipment, Instrumentation, & Analysis Capability Increase
 - Replace Obsolete Units
 - Add Ability to Test Units Simultaneously
 - Increase Quality & Quantity of Data Acquired
 - · ADC (voltage, temperature, stress/strain)
 - · Audio/Video
 - Safety Systems upgrade:
 - Fire suppression
 - Power distribution relocation
 - Intrinsically safe lighting

Accomplishments: AARA Project/Task Update FY2011

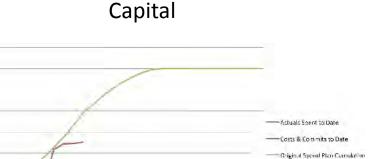
ARRA Projects as of 02/25/2011

	TOTAL SPEND PLAN	FY 10 Costs	FY11 Costs YTD	FY11 Commits	Total FY 2010 Costs & FY 2011 Costs + Commits	Total % Spent	Total Remaining Funds for FY2011 & FY2012
148535 - ARRA Operating Project Labor	400,000	5,614	174,067	0	179,681	44.9%	220,319
148634 - ARRA Capital Equipment	2,600,000	1,014,967	132,876	901,340	2,049,183	78.8%	550,817
148804 - ARRA Facilities Project	1,200,000	57,278	110,496	336,340	504,114	42.0%	695,886
Totals	4,200,000	1,077,859	417,439	1,237,680	2,732,978	65.1%	1,467,022

One-Third of timeline completed

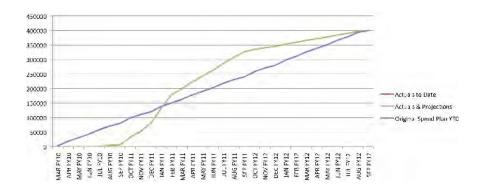
- Committed 60% of total funds
- Costed or committed 43% of Facility Upgrade funds
- Costed or committed 80% of Capital funds
- Costed or committed 50% of Capability Upgrade labor
- 55% Facilities upgrades complete

Technical Accomplishments: ARRA Equipment Acquisitions


Item	Unit cost	quantity	total	ACTUAL COSTS	Loaded
Electrical Test and Abuse Equipment		100			
Bitrode 48V/20A (8 ch)	\$58,200	1	\$58,200	\$58,240	\$60,511.360
Bitrode 100V/20A (4 ch)	\$36,300	1	\$36,300	\$36,300	\$37,715.700
Bitrode 20V/200A (2 ch)	\$35,000	1	\$35,000	\$63,720	\$66,205.080
Cell Level Tester (Magcor - 15 th)	344 000		\$42,000	241772	\$43,404,225
Pack Level Cycler (Bitrode)	\$24,000	- 1	\$24,000	\$26,042	\$27,057.638
Solartron ETS system	3.50,000		150,000	154,445	\$36,794,935
Gas Analysis Equipment					
(TER)	250,000	-	880,000	ANNUA	102745730
MS	\$75,000	1	\$75,000	\$75,000	\$77,925.000
Thermal Analysis Equipment					
Thermal Chamber	JA 500		FF (400)	1/4/15	1,6,984, 344
Thermal Test Enclosure	\$20,000	1	\$20,000	V.	
Mechanical Abuse Equipment					
Hydraulic Systyem Controller (Crush)	\$45,000	1	\$45,000	\$45,899	\$47,689.061
Data Acquisition					
Data Acquisition System	\$250,000	2	\$500,000		
Data Processing/Display	\$5,000	1	\$5,000		
Calorimetry, Thermal Characterization					
Laser-based in-situ diagnostic system	\$250,000	1	\$250,000		
Cl-Xmy.	1421.009	1	(980)000	141/9/150	MANAGERIA
ES ARC	5/37,000		Har, 000	MAC MAC	the contraction
EV.ARC	1125,000		\$125,000	\$419,5V0	19174,849,000
Setaram C80 Calorimeter	\$140,000	1	\$140,000		
Mayour	Avega	- 2	200,000	739,400	1103,796,100
Glave Sax	548400	_		- Artelian	3447 (019) 019
Equipment Total			\$2,274,000	\$1,382,848	\$1,436,779
Load	3.9%		\$88,686		
Total			\$2,362,686		
Software development	\$150,000	1	\$150,000	\$180,000	\$150,000
Staff Support (50:50 Laser diag./2546)	\$400,000	1	\$400,000	\$400,000	\$400,000
Facilities	\$1,200,000		\$1,200,000	\$1,200,000	\$1,200,000

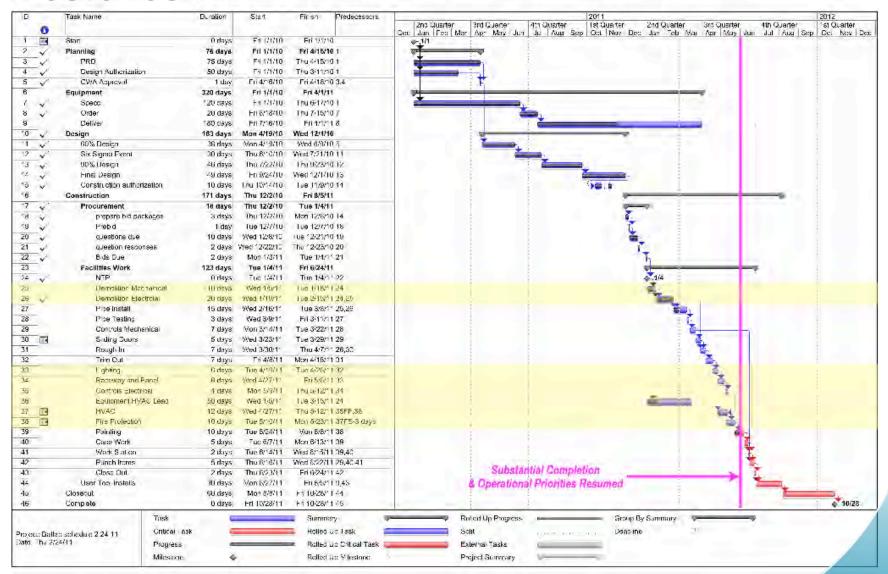
Costed
Committed (POs Issued--not delivered)

Accomplishments: Budget Status


Capital Labor

5800,000

\$600,000


\$400,000

\$200,000

Milestones

Battery Abuse/Safety Laboratory (BATLab) Before the Upgrade . . .

Accomplishments:

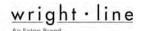
Battery Abuse/Safety Laboratory (BATLab)

During the Upgrade...

Equipment: Bitrode Battery Tester

(A Missouri Company)

- **№** 600 VDC
- **⊹** 30A
- ♦ 4 channels
- Modules
- Over-charge
- Over-discharge
- Cycle testing
- **→ Full Packs**
- Over-charge
- Over-discharge
- Cycle testing



Equipment: Wrightline Work Stations

□Flexible:

- · 61" to 84" high
- · 20" to 42" shelf depth
- . 24" 72" shelf width
- □1500 lb. load limit
- □Shelf adjustment in 1" increments
- □Sturdy casters ... easily moved
- On-board power distribution
- □ Cable control

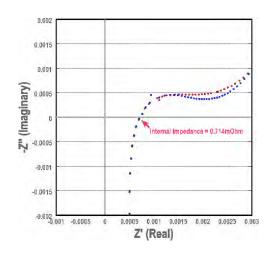
Equipment: Maccor Battery Tester 4200

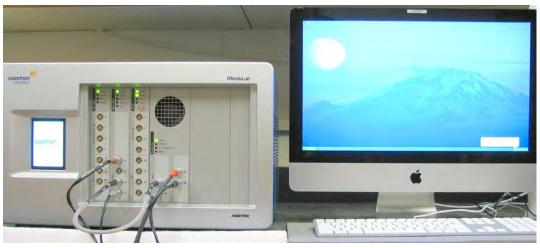
- 16 channels
- Remote cell sensors
- □ 5V, 10A
- Formation cycling
- Test cycling
- Complex load profiles
- Control:
- State of Charge (SOC)
- Charge /Discharge voltage
- Charge / Discharge current
- Charge/Discharge capacity

An Oklahoma Company

Equipment: Computed Tomography Xray

North Star Imaging


(A Minnesota Company)


- 0.005mm resolution
- □ No. 6 size cell capability
- 2D image: real time
- □ 3D image: 2-3h
- Full visualization:
- Rotation (3D)
- Zoom
- Contrast enhancement
- → ID "Z" number range

Equipment: Electrochemical Instrumentation

- ∞ ±100V
- & ±2A
- 0.1 pA Resolution
- EIS:
- . 1MHz 1µHz
- · ± 100V
- · ± 2A
 - 0.1pΩ Resolution

Subsidiary of Ametek (A Pennsylvania Company)

Equipment: Real-Time Microcalorimetry

International Battery Calorimeters

(An Arizona Company)

- Measures heat input/output while charging or discharging cells
- □ Resolution: 10⁻⁶ calories
- □ Coin-Cells up to 2032
- □ Cylindrical cells up to 18650
- Other cell holders available

Equipment: ES- &

EV- Accelerating Rate Calorimeters (ARCs)

- Thermal sensitivity
- Thermal runaway onset determination
- Total Enthalpy output
- Quantitative gas evolution
- Coupled with Sample Prep Glovebox:
- Component contributions
- Component interactions
- Mechanism elucidation

Equipment: Glovebox

(A California Company)

- ✓ Disassembly of fully charged Li-ion cells
- Partitioning of cell components
- ✓ Resealing cell components
- Assess cell component contributions (w/ARC)

Equipment: Test Control

& Data Acquisition/Management System

BATTERY DEVELOPMENT & TESTING

DIM ISHIF W

As we can a for the without most economic and political impact of is used to encounted by any they be removed by the second encounter t

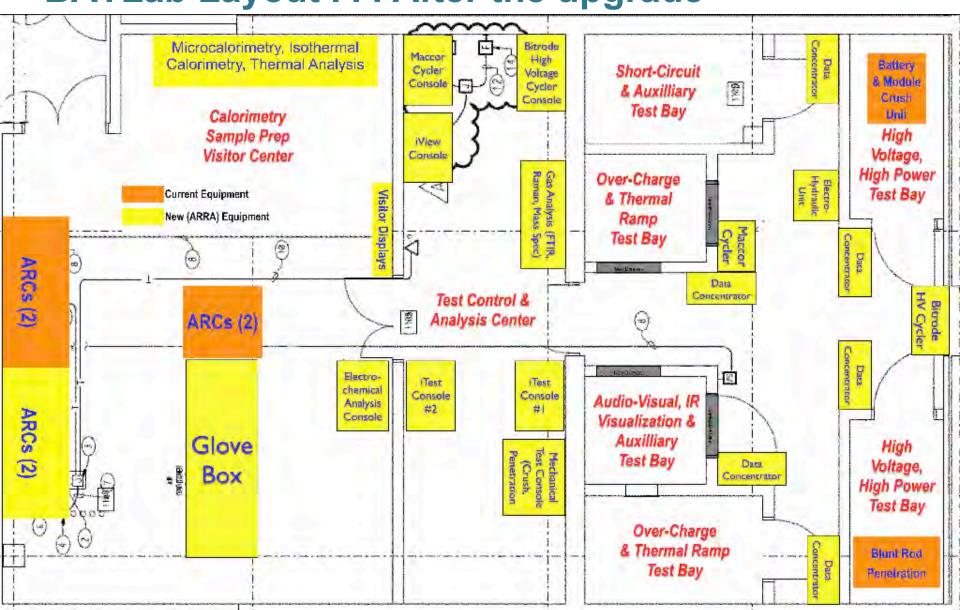
CHALLENGES

With believes manufacturing costs and the periods the oragon series. Believe the cospony performs be as affected by the activate denotes the activate of the series and dependence of the series and the series are series and the series and the series are series are series and the series are series are series and the series are series are series are series and the series are series are series are series and the series are series are

Understanding the challenges facing local/s collect testing facilities is essentially developing effective tops and control strategies. With the wide range of test ecuipment in use, communication between controls is efficially precision an integrated test system.

Other is of the process field expressing the new require highly-encoder factorizates be not been taken to the less results are incompared by personal for the source of th

THE ASC SOLUTION


•6) Technology can provide a complete burkey cool on critish if Vand i Enlang applications are using design, project considered, installation commissioning and several plants. Concern and technologies is considered by the provider of the contract companies of the artificial and technologies is a contract of the artification of the artificat

(A Michigan Company)

Accomplishments:

BATLab Layout . . . After the upgrade

Collaborations/Partnerships

- CH2M Hill Architect Engineers (Englewood, CO)
- Engineering Constructors General Contractor (Albuquerque, NM)
- □ JB Henderson Mechanical Contractor (Albuquerque, NM)
- □ Del Rio Enterprises Electrical Contractor (Albuquerque, NM)
- Bridgers & Paxton Consulting Engineers (Albuquerque, NM)

Future Work

- Complete facilities upgrade
- 1 July 2011
- Install & check-out new equipment on hand 31 July 2011
- Resume unrestricted testing activities 31 August 2011
- Complete Capital Equipment Acquisition30 September 2011
- Initiate upgraded testing productivity30 November 2011

Summary

At 33% of the project timeline:

- √ 44% of Capital Labor costed + 45% committed
- ✓ 44% Capital Equipment costed + 35% committed
- ✓ 14% Facilities Project costed + 28% committed
- √ 35% Overall Project costed + 30% committed
- ✓ Limited testing continuing through project upgrades

