

Process Development and Scale-up of Advanced Cathode Materials

Gregory K. Krumdick (PI)

Young Ho Shin

Ozgenur K. Feridun

Argonne National Laboratory May 14, 2013

Project ID: ES167

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date : Oct 2010
- Project end date : Sep 2014
- Percent complete : on going

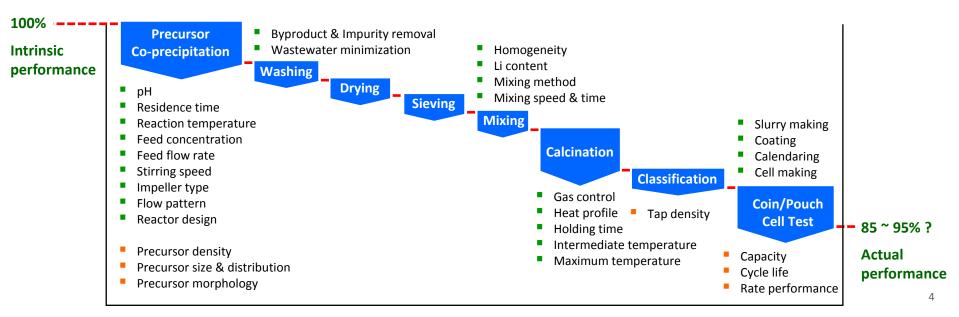
Budget

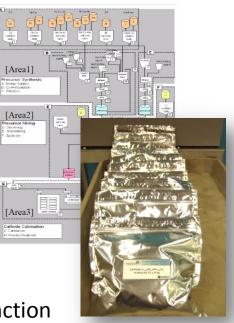
- Total project funding :
 - \$1.5M in FY12
 - \$1.3M in FY13
 (\$780K received, \$520K expected)

Barriers

- Complex linking of process variables affecting product quality
- Trade-off between capacity, cycle life, rate performance and tap density
- Scale-up challenges
- Manufacturing costs

Partners


- Argonne National Laboratory
 - Materials Screening Group
 - Cell Fabrication Facility
 - Applied R&D Group
- Jet Propulsion Laboratory


Objectives - Relevance

- The objective of this program is to provide a systematic engineering research approach to:
 - Identify and resolve constraints for the scale-up of advanced battery cathode materials, from the bench to pre-pilot scale with the development of cost-effective process technology.
 - To provide sufficient quantities of these materials produced under rigorous quality control specifications for industrial evaluation or further research.
- The relevance of this program to the DOE Vehicle Technologies Program is:
 - The program is a key missing link between discovery of advanced battery materials, market evaluation of these materials and high-volume manufacturing
 - Reducing the risk associated with the commercialization of new battery materials.
 - This program provides large quantities of materials with consistent quality
 - For industrial validation in large format prototype cells.
 - For further research on the advanced materials.

Approach - Strategy and Deliverables

- For the target lab-scale candidate material we will:
 - Develop a scalable manufacturing process
 - Process development to overcome engineering challenges
 - Achieve performance specifications of the target material
 - Understand performance trade-offs and process optimization to minimize quality drop
 - Produce kilogram quantities of the target candidate
 - With batch to batch reproducibility
- Evaluation and optimization of each process variables in conjunction with desired performance specifications:

Milestones

- FY12
 - Scale-up synthesis of $Li_{1.14}Mn_{0.57}Ni_{0.29}O_2$ using the carbonate process
 - Process development for pre-pilot scale production
 - Particle growth issue (completed)
 - Particle cracking issue (ongoing)
 - Optimize process variables for performance targets (completed)
 - Produce kilogram quantities of materials (2 batches delivered)
 - Synthesize MnCO₃ and Li₂MnO₃ for ion exchange research (completed)
 - Relocate interim labs to the Materials Engineering Research Facility (completed)
- FY13
 - Process development to resolve carbonate particle cracking issue
 - Determine effect of particle size on cracking (completed)
 - Understand tradeoff between particle cracking and performance (ongoing)
 - Scale-up synthesis of $Li_{1.14}Mn_{0.57}Ni_{0.29}O_2$ using the hydroxide process
 - Compare results of carbonate and hydroxide processes (completed)
 - Optimize process variables for performance targets (ongoing)
 - Begin scale-up synthesis of new material
 - Specific material and process is under discussion

Relocation of Interim Labs to the MERF

Wet processing area (located next to the MERF)

- 4L and 20L transparent CSTR
- Washing equipment
- Microscope

Dry processing area

- Powders hood
- GL Filtration filter washer dryer
 - Spray dryer & Air classifier
- Vertical and shaker mixer
- Shaker sieve, crusher, mill
- Calcination furnace

Characterization lab

- ICP
- XRD
- BET
- PSATGA-DSC
- TGA-D
- Tap density

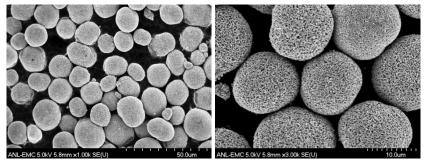
Coin cell fabrication

- VAC glove box
- Maccor cycler
- Coating equipment
- Drying equipment
- Calendaring equipment
- Coin making equipment

The Materials Engineering Research Facility (MERF)

- 10,000 sq. ft. high hazard facility
- Contains electrolyte and cathode scale-up programs

Over 1,200 coin cells

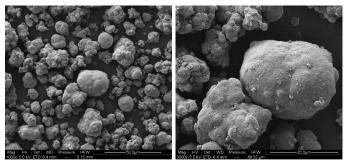

were tested to optimize process variables and check reproducibility

	Outgoing I	nspection Da	ta Sheet		Carrier	Receiver	Manage	
Target Cathode Composition		Prepared by			Weight		Delivery date 9/10/2012	
		Young Ho Shin			1.0 Kg			
Anal	ysis	Target Spec.	Results	Judgement	Note	-	Method	
0000000	D10 (#a)	> 10.0	4.8			1.12	Particle Size Analyzer	
Particle Size Distribution	D50 (m)	20.0 ± 3.0	7.8					
Diserboeon	D90 (.m)	< 30.0	12.9					
Specific Surfa	ce Area (milg)		5.56				BET	
Tap Density (g/cc)			1.49			Tap Density		
	Li		9.49					
Element	Ni		19.09				ICP-MASS	
Wt %	Mn		35.90					
	Na		0.38					
For	Jse		Lithium Ion	Secondary Battery				
SEM				Remark				
				that may not b	and data is con le communicate nsent of Energy	ed in any way		
			X	1) To minimize (7.8µm spherica				

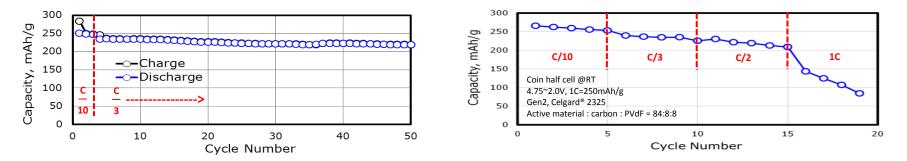
4L bench-scale vs. 20L pre-pilot-scale (previously reported)

• 4L bench-scale (Optimized)

Lot #: ES-110921 $\text{Li}_{1.35}\text{Ni}_{1/3}\text{Mn}_{2/3}\text{O}_{y}$ Batch operation \rightarrow Particle growth issue 100g production



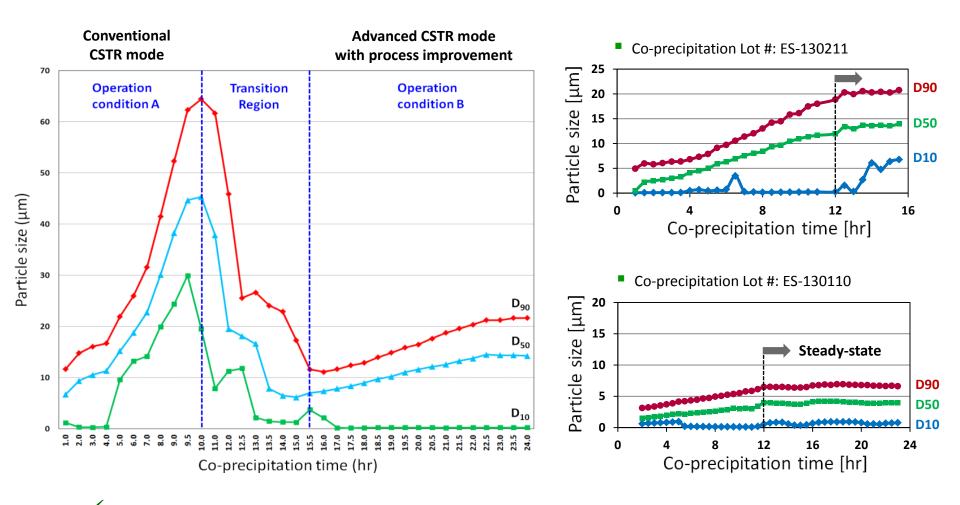
D50 = 17 μ m, Tap density = 1.61 g/cc


• 20L pre-pilot-scale (Preliminary)

Lot #: ES-120222 $\text{Li}_{1.35}\text{Ni}_{1/3}\text{Mn}_{2/3}\text{O}_{y}$ Continuous operation \rightarrow Shape & density issue 5kg production

1st delivery to Cell Fabrication Facility (1.0kg)

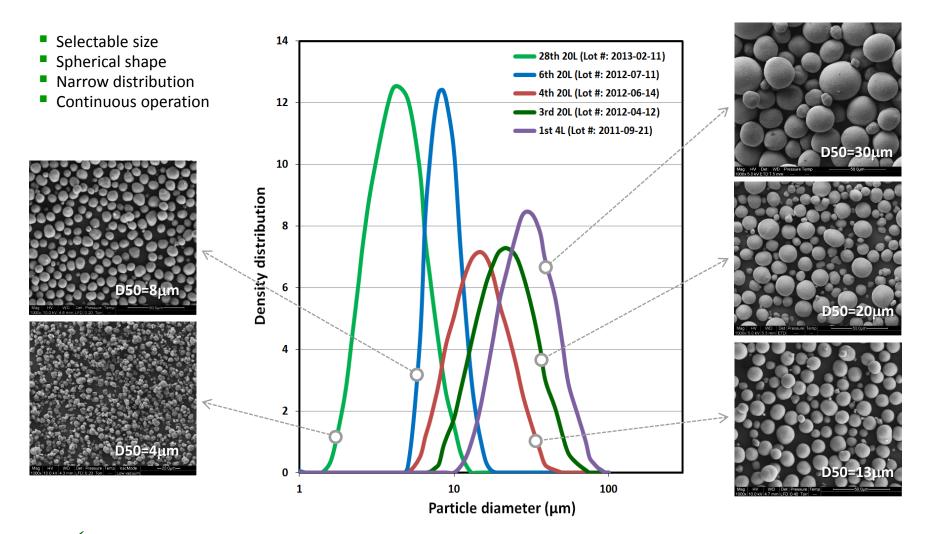
D50 = 15 μ m, Tap density = 1.36 g/cc


4L Bench scale (batch process) product showed good morphology, capacity and cycle life. 20L pre-pilot scale (continuous process) product had good capacity but poor morphology and cycle life.

Improvement for Continuous Particle Growth Control

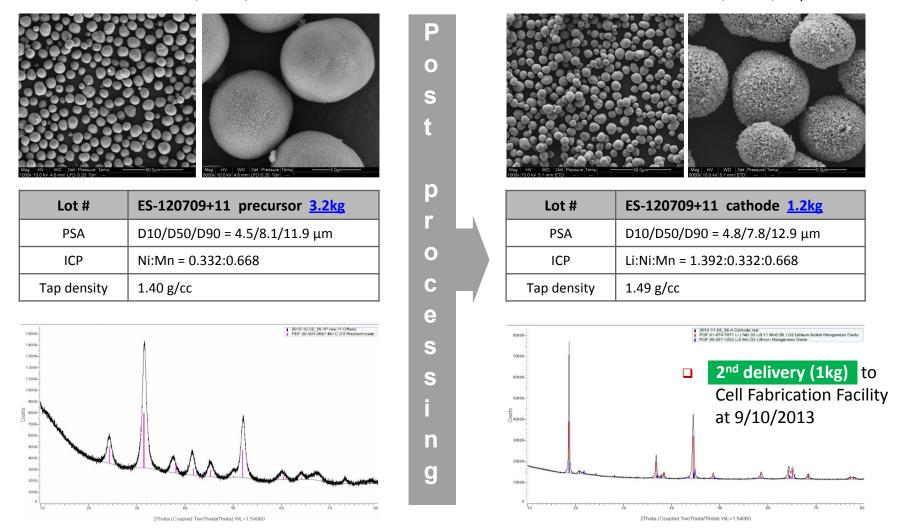
(Patent filing pending)

Enables <u>particle size control</u>


Enables production of specific size particles

Specific-size precursors can be produced continuously.

Improvement for Continuous Particle Growth Control

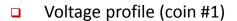

Enables improved precursor formation

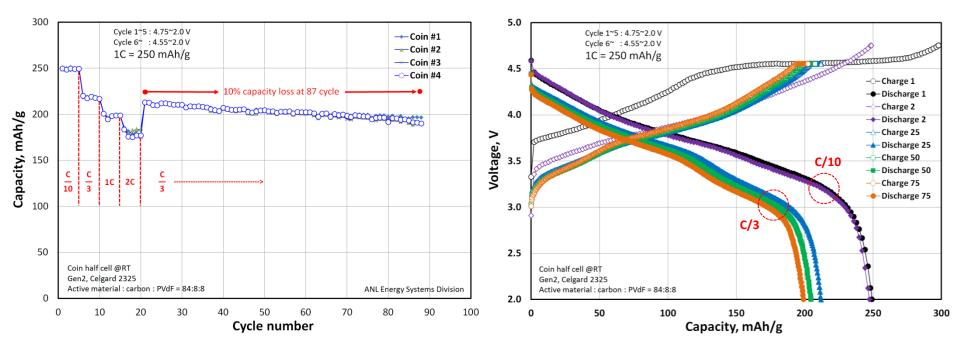
✓ Precursor size, shape and distribution are controllable.

Technical Accomplishments : Li_{1.39}Ni_{1/3}Mn_{2/3}O_y by Carbonate Process **Precursor and Cathode Production**

• ES-120709+11 Ni_{1/3}Mn_{2/3}CO₃ precursor

7.8µm-size spherical cathode material was produced in kilogram quantity.

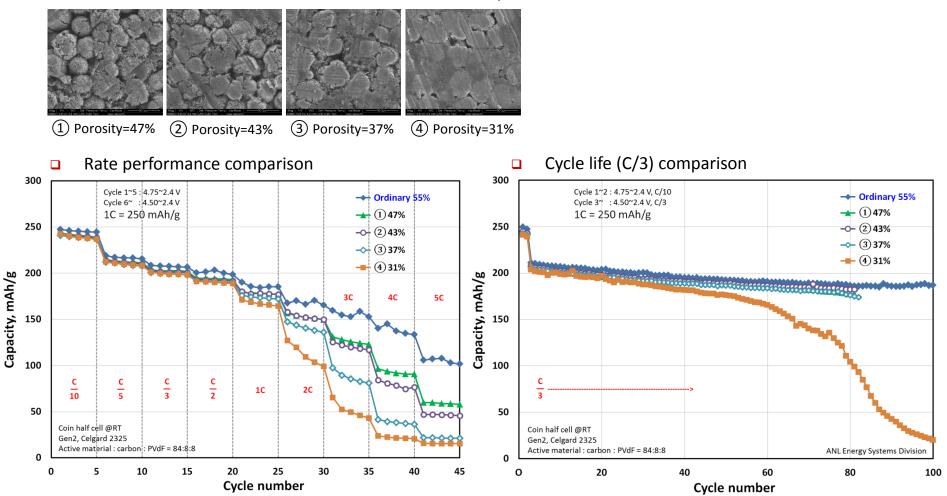

ES-120709+11 Li_{1.39}Ni_{1/3}Mn_{2/3}O_v cathode


Technical Accomplishments : $Li_{1,39}Ni_{1/3}Mn_{2/3}O_y$ by Carbonate Process

Electrochemical performance

2nd CFF delivery ES-120709+11 Li_{1.39}Ni_{1/3}Mn_{2/3}O_y

Rate performance, cycle life (C/3) and reproducibility check

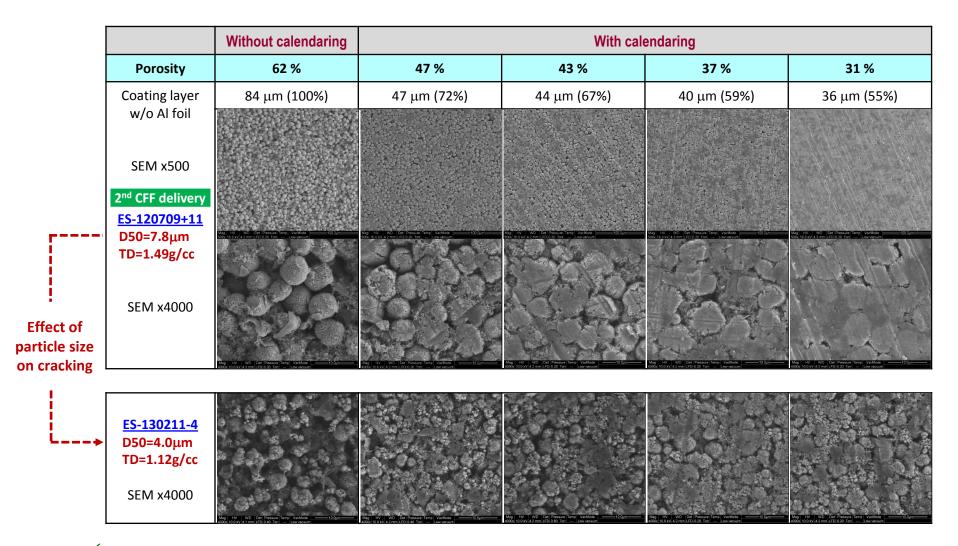


2nd CFF delivery product shows high capacity (~250mAh) and good cycle life (~100 cycle). However, particles were found to cracking during calendaring.

Technical Accomplishments : $Li_{1.39}Ni_{1/3}Mn_{2/3}O_y$ by Carbonate Process

Effect of Electrode Porosity on Performance

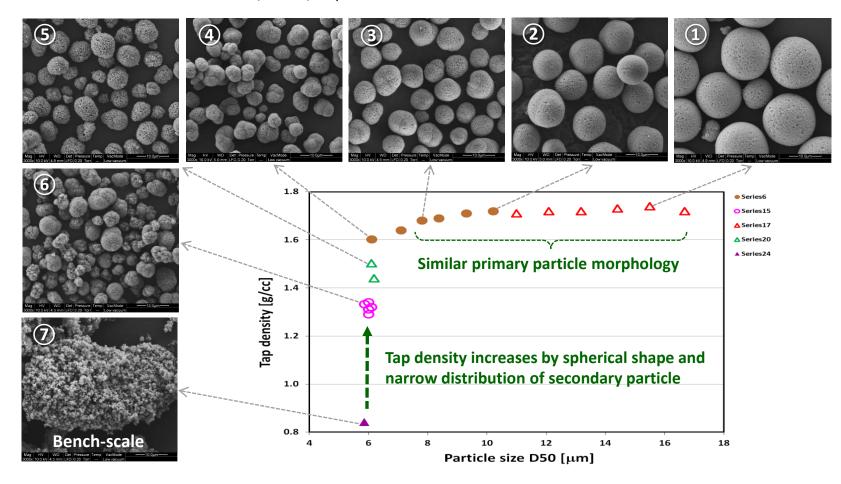
2nd CFF delivery ES-120709+11 Li_{1.39}Ni_{1/3}Mn_{2/3}O_v



Electrode porosity has minimal effect on initial capacity.

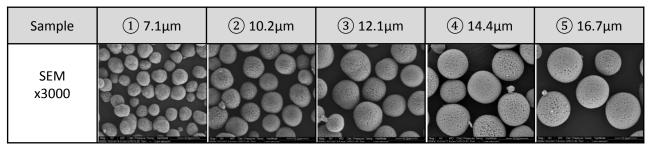
However, rate performance and cycle life decrease as electrode porosity is reduced.

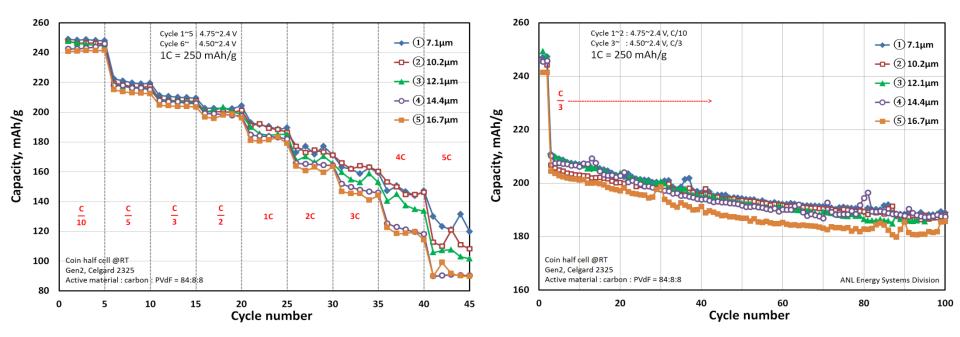
Technical Accomplishments : Li_{1,39}Ni_{1/3}Mn_{2/3}O_v by Carbonate Process


Particle Cracking Issue During Calendaring

Smaller particles resulted in less cracking. However, smaller particles resulted in lower tap density.

Particle Morphology, Size and Density


• Same composition ($Li_{1.39}Ni_{1/3}Mn_{2/3}O_{y}$) by carbonate process (20L CSTR)



Particle morphology has a greater effect on tap density than particle size. If spherical, small secondary particles have similar tap density.

Size Effect on Electrochemical Performance

Effect of secondary particle size on rate performance and cycle life

Small particles have higher rate capability. Large particles have minimal effect on initial capacity, but have a reduction of rate capability.

Comparison of Carbonate Produced Materials, Start of Hydroxide Process Work

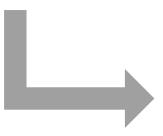
Carbonate process

	ANL optimized pre-pilot-scale	Commercial manufacturer A	Commercial manufacturer B
Composition	Li _{1.39} Ni _{1/3} Mn _{2/3} O _y	Li _a Ni _b Co _c Mn _d O _y	Li _a Ni _b Co _c Mn _d O _y
Capacity @ C/10 (mAh/g)	250	170	165
Density (g/cc)	1.7	2.8	2.0
BET (m²/g)	4.0	0.3	0.5
D50 (µm)	11	11	11
Calendaring	Particles crack	No cracking	No cracking

Density increase can minimize cracking. Trade-off between density and performance.

- For <u>high performance</u>, carbonate produced particles that don't crack, you need:
- \checkmark
- Small secondary particles. Increased particle density.

Spherical secondary particles.


CialImage: The hydroxide process can produce crackturer Bfree material, although typically has much

lower tap density.

 Established pre-pilot-scale hydroxide process.

Hydroxide process

- Preliminary size-controlled hydroxide precursors were produced continuously.
- Electrochemical performance of hydroxide and carbonate materials was compared.

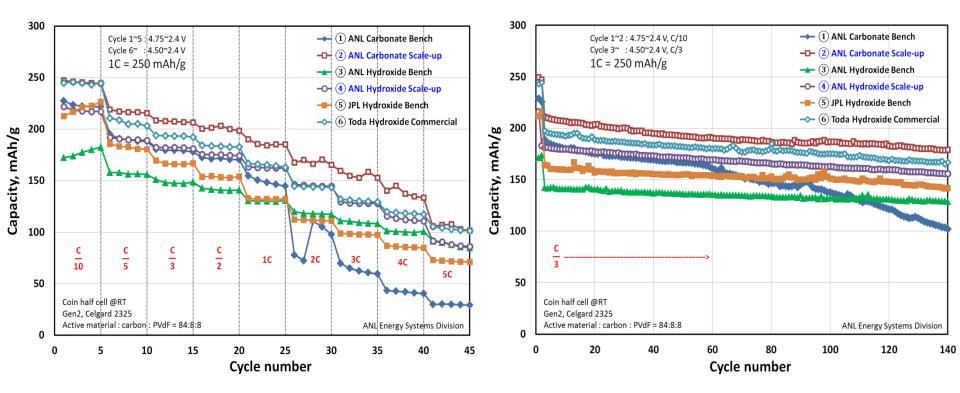
Technical Accomplishments : $Li_{1,39}Ni_{1/3}Mn_{2/3}O_{y}$ by Hydroxide Process

Hydroxide precursor synthesis : Ni_{1/3}Mn_{2/3}(OH)₂

 2013-01-07 : Set-up completion of 20L hydroxide co-precipitation CSTR 01-08 : 1st hydroxide synthesis during 12hr (Lot #: ES-130108) 01-10 : 2nd hydroxide synthesis during 24hr (Lot #: ES-130110)

Size-controlled hydroxide precursors (preliminary pre-pilot-scale) were produced continuously.

Technical Accomplishments : $Li_{1.39}Ni_{1/3}Mn_{2/3}O_y$ by Hydroxide Process


Comparison of Hydroxide and Carbonate Materials

 6 cathodes : Bench scale carbonate and 2 hydroxide cathodes Pre-pilot scale carbonate and hydroxide cathodes Commercial hydroxide cathode

	Carbonate cathode		Hydroxide cathode				
Lot #	① ANL-101217B	(2) ANL-120905	③ ANL-1108102	④ ANL-130110	(5) JPL	6 Toda- HE5050	
Scale	Bench scale	Pre-pilot scale Optimized	Bench scale	Pre-pilot scale Preliminary	Bench scale (contains Co)	Commercial (contains Co)	
SEM x3,000				Manufacture of the second	Martin Constraint from Landaum		
SEM x8,000	Man 19 10 Bill Para Tan Annual State						
ICP analysis	Li _{1.35} Ni _{0.32} Mn _{0.68} O _y	Li _{1.37} Ni _{1/3} Mn _{2/3} O _y	Li _{1.31} Ni _{1/3} Mn _{2/3} O _y	Li _{1.35} Ni _{1/3} Mn _{2/3} O _y	Li _{1.61} Ni _{0.16} Mn _{0.71} Co _{0.13} O _y	Li _{1.52} Ni _{0.16} Mn _{0.71} Co _{0.13} O _y	
D10/D50/D90 [µm]	7.6 / 12.7 / 21.0	6.9 / 11.1 / 18.4	7.7 / 13.2 / 22.1	2.4 / 4.7 / 8.9	1.2 / 11.1 / <mark>29.3</mark>	3.1 / 5.3 / 9.2	
Tap density [g/cc]	1.41	<u>1.70</u>	0.98	1.02	<u>1.70</u>	1.03	

Technical Accomplishments : Li_{1.39}Ni_{1/3}Mn_{2/3}O_y by Hydroxide Process Comparison of Hydroxide and Carbonate Materials

• Rate performance and Cycle life (C/3) comparison between carbonate and hydroxide materials

Argonne's scaled carbonate material had the best capacity and rate performance. Argonne's scaled hydroxide material (not optimized) is close in performance to Toda's HE-5050

Collaborations

Material Screening Group, Argonne

Screening target lab-scale candidate

Cell Fabrication Facility, Argonne

Pouch cell evaluation

Applied R&D Group, Argonne

Bench-scale sample preparation

Chemical Sciences & Engineering Division, Argonne

Evaluation of material performance

Jet Propulsion Laboratory & NASA

Provided material for comparison

Delivery of cathode materials

Date	Material / Lot	:#	Where	Purpose
11/29/2011	LNMO ES-120111	11 g	Argonne – CSE Zonghai Chen	Thermal safety test
03/02/2012	LNMO ES-120111	7 Kg	Bren-Tronics	Performance test
04/05/2012	LNMO ES120222	1 Kg	Argonne Cell Fabrication Facility	Pouch cell evaluation
05/10/2012	LNMO ES-110921	6 g	Argonne – CSE Wenquan Lu	Performance test
09/10/2012	09/10/2012 LNMO ES-120709+11		Argonne Cell Fabrication Facility	Pouch cell evaluation
11/26/2012	MnCO ₃ ES-121009	10 g	Argonne - CSE Jason R. Croy	Material evaluation
11/26/2012	Li ₂ MnO ₃ ES-121009-1	10 g	Argonne - CSE Jason R. Croy	Material evaluation
02/20/2013	Crushed LNMO	0.2 Kg	Argonne Cell Fabrication Facility	Pouch cell evaluation

Activities for Next Fiscal Year

- Minimize cracking issue during calendaring of carbonate synthesized material.
 - Modify process to make denser spherical particles and understand performance trade-off.
 - Produce kilogram quantity of carbonate material for pouch cell evaluation.
- Continue to work on hydroxide candidate material at pre-pilot-scale.
 - Optimize particle size, morphology, density and electrochemical performance.
 - Produce kilogram quantity material for pouch cell evaluation.
- Select and produce new lab-scale candidate material.
 - Candidates :
 - Composition Layered-layered spinel
 - Process Lithium ion-exchange reaction
 - Secondary particle structure Core-shell or gradient material
 - Produce kilogram quantity material for pouch cell evaluation.

Summary

Interim laboratories were relocated to the MERF.

Carbonate process at pre-pilot-scale was established and optimized.

- Advanced 20L CSTR produces size-controlled spherical precursor over 24hr continuous operation.
- Particle size and morphology were investigated in depth to get high density and performance.
- 8 μm-size cathode product was delivered to Cell Fabrication Facility (2nd kilogram delivery).
- Particle cracking and performance was investigated.
- Hydroxide process capability was established and preliminary material was evaluated.
- Synthesized MnCO₃ and Li_2MnO_3 for ion exchange research.

Acknowledgements and Contributors

Argonne National Laboratory

- Gerald T. Jeka for characterization (MERF)
- Michael Kras for coin cell making (MERF)
- Wenquan Lu
- Andrew Jansen
- Bryant Polzin
- Steve Trask
- Michael M. Thackeray
- Tony Burrell
- Donghan Kim
- Jason R. Croy
- Ilias Belharouak
- Daniel Abraham
- Huiming Wu
- Jet Propulsion Laboratory
 - Kumar Bugga

Support from David Howell and Peter Faguy of the U.S. Department of Energy's Office of Vehicle Technologies is gratefully acknowledged