Proactive Design of *n*-Type (In,Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery

Mas Subramanian¹ and Terry Hendricks²

¹Department of Chemistry, Oregon State University, Corvallis, OR ²Energy & Efficiency Division, PNNL, Corvallis, OR

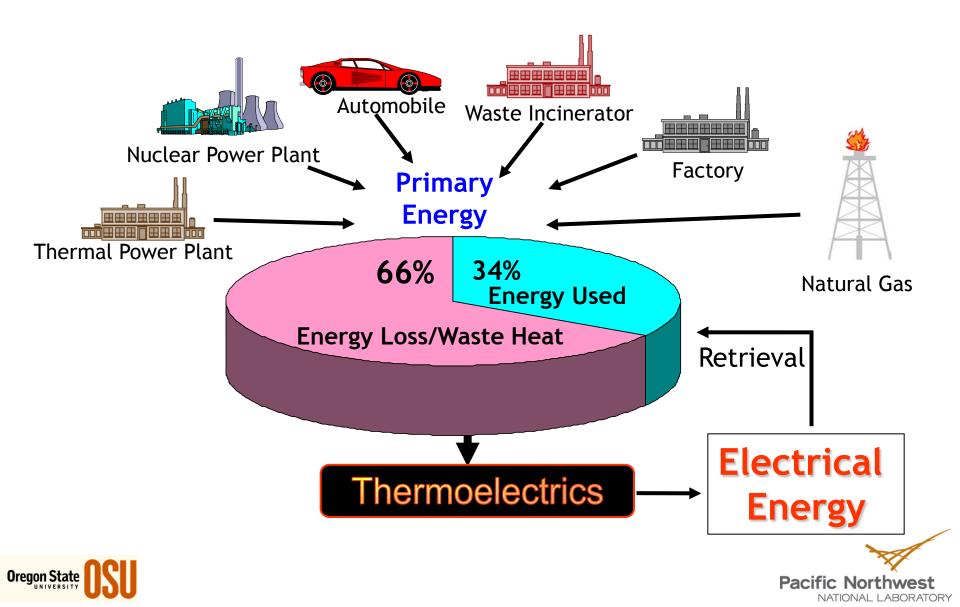
2011 Thermoelectrics Applications Workshop January 3-6, 2011 Hotel Del Coronado San Diego, CA

Team Members

Krishnendu Biswas, Department of Chemistry, OSU Morris Good, Energy & Efficiency Division, PNNL Kamandi Roberts[,] Energy & Efficiency Division, PNNL

Acknowledgements

We thank our sponsors: Jerry Gibbs and John Fairbanks, US DOE EERE - Office of Vehicle Technologies


Outline

- Motivation
- TE characterization challenges
- Filled skutterudites (single and multiple filled)
 - Indium and Rare earths
 - Thermoelectric properties
 - Structural properties
- Summary

Motivation

Waste Energy Recovery Magnitude of the Opportunity

Transportation Sector

Light-Duty Passenger Vehicles + Light-Duty Vans/Trucks (SUVs)

2004: ~135 billion gallons of gasoline

~ 4.5 quads/yr exhausted down the tail pipe

~ 5.5 quads/yr rejected in coolant system

Heavy-Duty Vehicles

2004: ~32 billion gallons of diesel

- ~1.45 quads/yr exhausted down the tail pipe
- ~1 quad/yr rejected in coolant system (~1 quad)

Hybrid Electric Vehicles

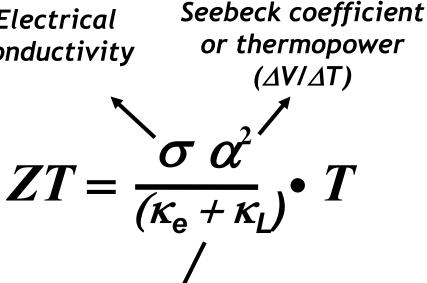
Move Toward Electrification – Micro, Mild, and Full

Needs for Power Generation

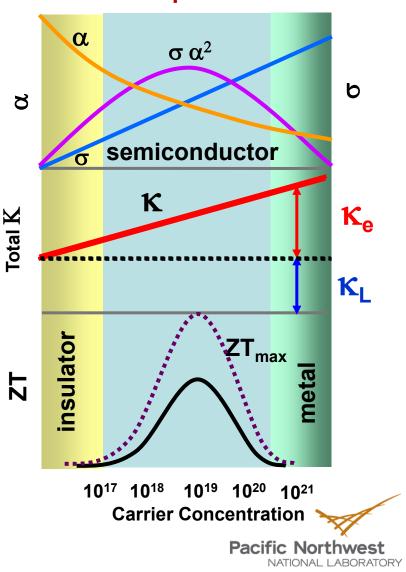
Needs for Electric-Driven Cooling

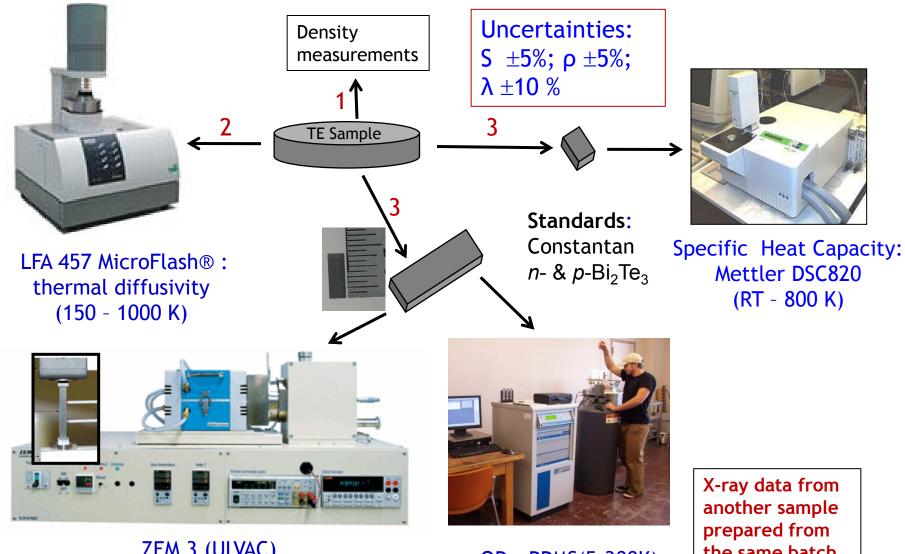
Industrial Sector

Glass, Aluminum, Cement, Paper, Chemical Another 10 quads – 1.8 quads recoverable



TE materials performance: Figure of Merit


Contraindicated **Properties**


Total thermal conductivity

No upper limit for ZT

TE Properties Characterization

ZEM 3 (ULVAC) Seebeck coefficient/electrical resistance measurement (RT-800K) Oregon State

QD - PPMS(5-300K)

the same batch

ZT Values - A Word of Caution

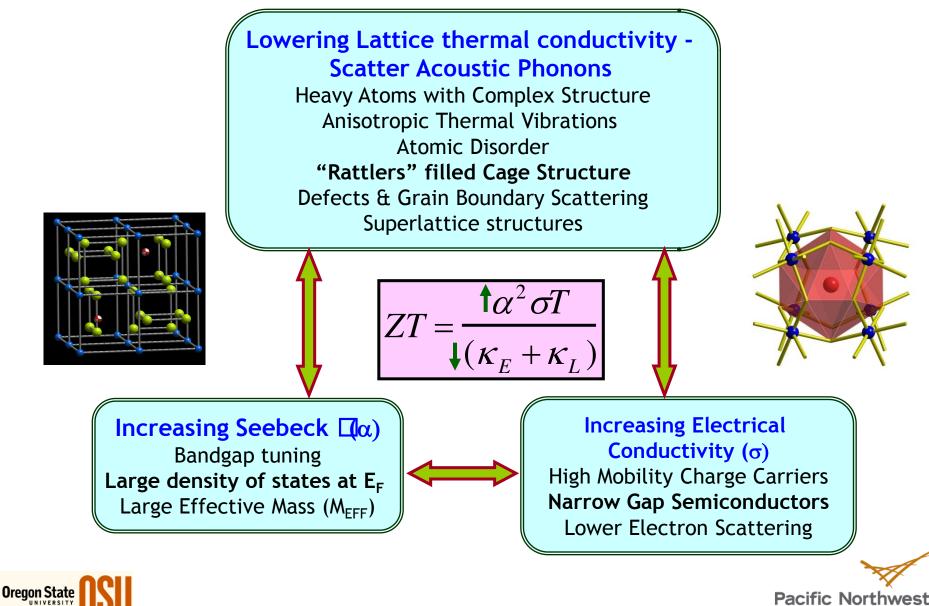
Table 1. Effect of instrument accuracy on ZT

Sample A: ZT = 1.4, T = 575 K, S = 300 μ V/K, ρ = 3 m Ω .cm, κ = 1.23 W/mK

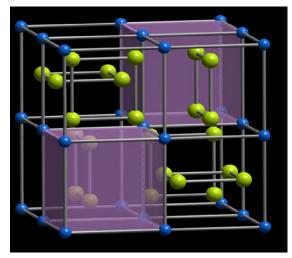
Instrumental Error ¹	ZT _{Max} ²	ZT	³ ZT _{Min}	ZT _{Max} - ZT _{Min}
± 1%	1.46	1.4	1.35	0.11
± 2%	1.52	1.4	1.29	0.23
± 5%	1.71	1.4	1.15	0.56
± 10%	2.10	1.4	0.94	1.16

Sample B: ZT = 1.2, T = 575 K, S = 280 μ V/K, ρ = 3 m Ω .cm, κ = 1.25 W/mK

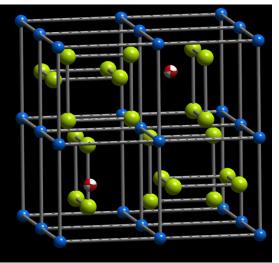
Instrumental Error ¹	ZT _{Max} ²	ZT	ZT _{Min} ³	ZT _{Max} - ZT _{Min}
± 1%	1.25	1.2	1.15	0.1
± 2%	1.30	1.2	1.11	0.19
± 5%	1.47	1.2	0.98	0.49
± 10%	1.80	1.2	0.80	1.0


1. Assume S, ρ , and κ have the same degree of instrumental errors.

- 2. $\rm ZT_{Max}$ is calculated using $\rm S_{Max}, \, \rho_{Min}, \, \kappa_{Min}.$
- 3. $\rm ZT_{Min}$ is calculated using S_{Min}, $\rho_{\rm Max},$ $\kappa_{\rm Max}.$



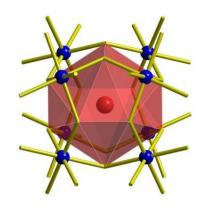
Research strategies to increase ZT



NATIONAL LABORATORY

Crystal Structure of Skutterudite

 $CoSb_3 [Co_8(Sb_4)_6]$

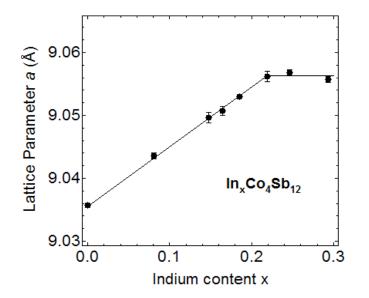


 $R_xCo_4Sb_{12}$

Oregon State

- Cobalt atoms form a *fcc* cubic lattice
- Antimony atoms are arranged as a square planar rings
- There are 8 spaces for the Sb₄ units; 6 are filled and 2 are empty

Atoms can be inserted into empty sites. Atoms can "rattle" in these sites scatter phonons and lower the lattice thermal conductivity.



Indium Filled Skutterudites: In_xCo₄Sb₁₂

•

•

In_xCo₄Sb₁₂ : ZT~0.8-1.2 @ 600K

He, Chen, Rosenfeld and Subramanian, Chem. Mater. 18, 759, (2006)

Subramanian US 7,462,217

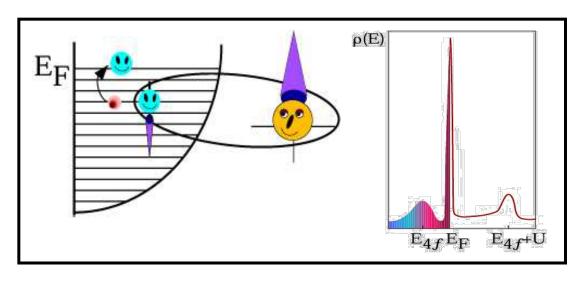
> a ~ 9.0563 Å > x > 0.25, InSb mpurity 1.2 In Co Sb 1.0 0.8 ħ 0.6 Pacific Northwest

CoSb₃: *a* = 9.0357 Å

 \checkmark Agrees with reported *a* = 9.0345

Å for CoSb₃ single crystal

Indium solubility limit x = 0.22


Rare-Earth Intermediate Valence Intermetallics

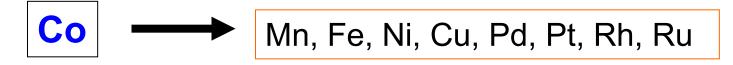
- Intermetallics with rare earths in intermediate valence states
 - → Yb^{2+,3+} (4f¹³-4f¹⁴); Ce^{3+,4+} (4f¹-4f⁰)
 - Large Density of States at the Fermi Level
 - interaction between conduction electrons (s, p or d state) and partially localized 4f electrons leads to large α
 - very large numerator (power factor)
 - large denominator (thermal conductivity) low ZT

$$ZT = \frac{\sigma \, \alpha^2}{(\kappa_{\rm e} + \kappa_{\rm L})} \bullet T$$

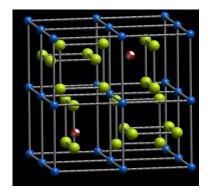
Examples: YbAl₃ and CePd₃

Oregon State

(G. Mahan)



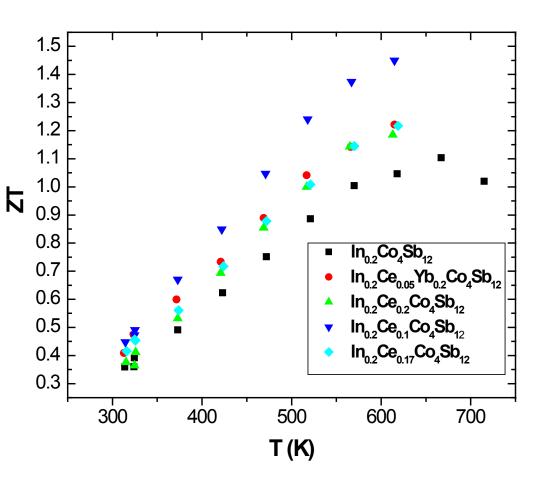
TE based on Skutterudites with Dual Rattlers: In_{0.15}R_{0.10}Co₄Sb₁₂¹



R: Rare Earth (La, Ce, Nd, Er, Yb etc.)

Current Focus: $In_{0.2}Co_4Sb_{12}$ $In_xCe_yCo_4Sb_{12}^{1,2}$ $In_xCe_yYb_zCo_4Sb_{12}$

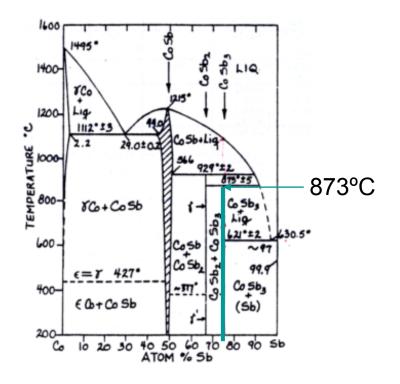
In_xR_vCo₄Sb₁₂


¹Subramanian et al. US patent 7,723,607 (Filed: April 2005; Issued: May 25, 2010)
²Li e al. *Appl. Phys. Lett.*, 94, 102114, (2009).

In_xCe_yCo₄Sb₁₂ Skutterudites

- In_{0.2}Co₄Sb₁₂ ZT ~ 1.1 @
 600 K (highly reproducible).
- There is an enhancement of ZT when Ce is co-filled with In.
- Cerium (Ce³⁺, Ce⁴⁺) mixed valiancy may play a role. -Enhancement of Seebeck values.
- In_{0.2}Ce_{0.15}Co₄Sb₁₂ showed ZT ~ 1.5 – 1.6 around 500 K, but not reproducible.

Pacific Northwest

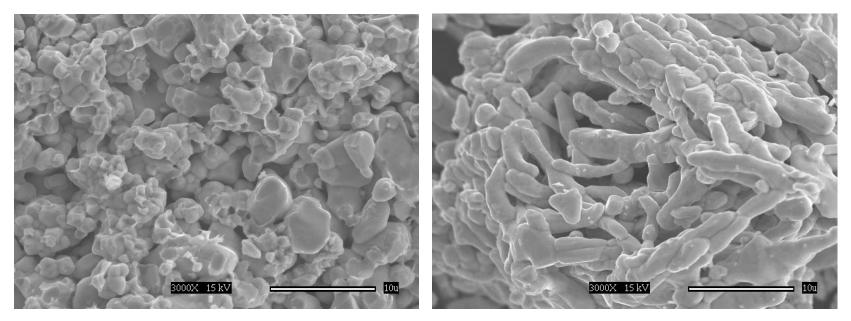

In_xCe_yCo₄Sb₁₂ - Synthesis

Two Methods

(1) Rare earth metal (Ce) reacted with preformed $In_{0.15}Co_3Sb_{12}$

(2) Starting from elemental rare earth, In, Co, Sb in stoichiometric ratios

The powders were calcined at 610° Cfor 12 hours, and then 675° C for 36 hours under a gas mixture of 5% H₂ and 95% Ar. Reground, pelletized, sintered at 750°C for 4 hours under the same gas mixture.



Pacific Northwest

(Pellets are of 75 – 85% theoretical density)

ZT Dependence on Microstructure (In_{0.15}Ce_{0.10}Co₃Sb₁₂) ZT ~ 1.4 @ 600 K

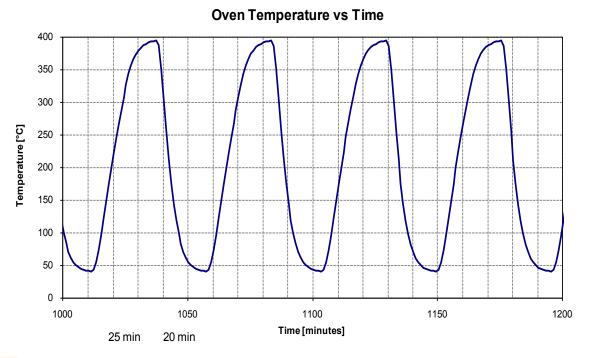
Synthetic Method - 1

Synthetic Method - 2

In addition to chemical composition and crystal structure, for ceramic samples, the ZT also depends on microstructure, grainmorphology etc.

Structural Properties: Resonant Ultrasound Spectroscopy

Specimen Label and Comments	ρ, density (g/cm³)	υ, Poisson's ratio	CTE (10 ⁻⁶ / C) (300-673K)	E, Elastic Modulus (10 ¹¹ N/m ²)	ZT (@ 600 K)
Bi ₂ Te ₃ Alloys (Literature)		0.21-0.37	14 -21 (Anisotropic)	0.40-0.47	0.0-0.1
CoSb ₃ (Literature)		0.222		1.396	0.6
CoSb ₃		0.225-0.226	12.8	1.391-1.398	
In _{0.1} Co ₄ Sb ₁₂		0.227	8.37	1.396	
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂	7.314		8.30-8.83		
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - PNNL3	7.314	0.185	8.61	1.339	1.0
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LB1	7.304	0.215	8.56	1.348	1.0
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LB2	7.264	0.204	8.26	1.326	1.0
In _{0.2} Ce _{0.1} Co ₄ Sb ₁₂	7.019	0.210-0.214	8.11-8.44	1.182-1.185	1.4
In _{0.2} Co ₄ Sb ₁₂	7.06-7.10	0.208218	8.27-8.34	1.178-1.238	1.1
$In_{0.2}Yb_{0.1}Ce_{0.05}Co_4Sb_{12}$	6.421	0.207	7.06-9.7	0.895	1.1


PNNL3-G1B, LB1 and LB2 are codes for samples cut from the same bar

Thermal Cycling Tests

- Materials subjected to thermal cycling tests at temperatures representative of waste heat recovery applications
 - Ar atmosphere
- Temperature profile shown below
 - ➤ 40°C to 400°C
 - Limited to 200 cycles

 $\ln_{0.2}Ce_{0.1}Co_{4}Sb_{12}$

Thermal Cycling Results

	Temp [°C]	Before Thermal Cycling		After Thermal Cycling	
		Young's	Poisson's	Young's	Poisson's
		Modulus,E	Ratio, v	Modulus, E	Ratio, v
		10 ⁹ [N/m²]		10 ⁹ [N/m ²]	
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂	20-22	134.8	0.215	134.4	0.204
(LBL1) – n-type					
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂	20-22	132.6	0.204	131.9	0.200
(LBL2) – n-type					
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂	20-22	133.9	0.185	135.8	0.194
(PNNL3-G1B) n-type					
In _{0.2} Ce _{0.15} Co ₄ Sb ₁₂ n-type	20.6	124.5	0.213	125.7	0.214
In _{0.2} Ce _{0.1} Co ₄ Sb ₁₂	20.5	123.1	0.197	125.1	0.217
In _{0.2} Ce _{0.17} Co ₄ Sb ₁₂	19.9	109.5	0.213	108.5	0.210
In _{0.2} Ce _{0.05} Yb _{0.1} Co ₄ Sb ₁₂	20-22	89.5	0.208	85.9	0.207

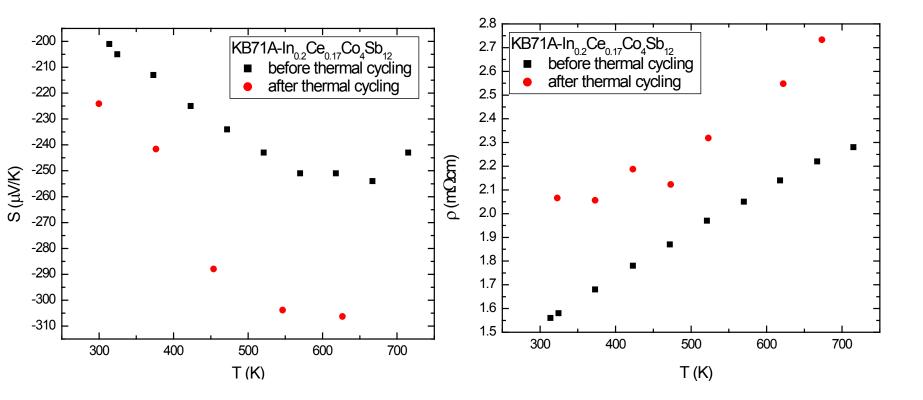
Minimal thermal cycling impact on structural properties

- Indicates little or no micro-crack growth or initiation
- Thermal stability critical to TE devices and systems

Thermal Cycling Impacts Power Factor

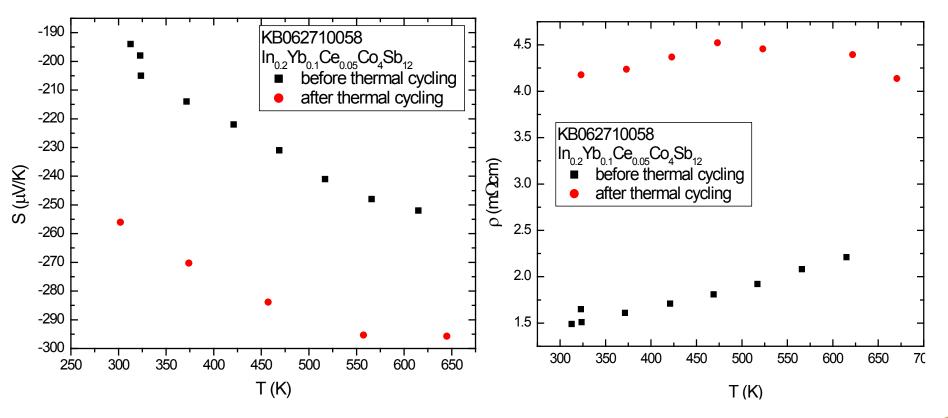
- In_{0.15}Ce_{0.1}Co₄Sb₁₂ showed significant increases in power factor after thermal cycling
- Effect in the right direction Big impact on Seebeck coefficient
- Could not check thermal conductivity however (incorrect sample size and shape to re-run κ tests)
- Requires further investigation with other (InCe)-based compounds and with statistically-significant sample numbers

	Temperature	Before Thermal Cycling	After Thermal Cycling	
	[K]	Power Factor $[\mu W/cm-K^2]$	Power Factor $[\mu W/cm-K^2]$	
$In_{0.15}Ce_{0.1}Co_4Sb_{12}$ (LBL1) n-type	510	28.7	39.2 (+36.6%)	
$\begin{array}{c} (\underline{\text{LBL1}}) \stackrel{\text{at cype}}{=} \\ \hline \text{In}_{0.15}\text{Ce}_{0.1}\text{Co}_4\text{Sb}_{12} \\ (\underline{\text{LBL2}}) \text{ n-type} \end{array}$	510	28.7	32.7 (+13.9%)	


> X-ray data before and after thermal cycling indicates no sign of decomposition or change in the cubic lattice parameter

Thermal Cycling Impacts on Power Factor

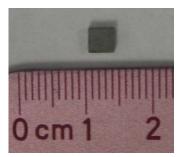
In_{0.2}Ce_{0.17}Co₄Sb₁₂ showed ~ 35 % increase in PF @ ~ 500-600K
 Similar behavior seen in other dual filled (In,Ce)Co₄Sb₁₂ samples



Thermal Cycling Impacts on Power Factor

 $hightarrow \ln_{0.2}Ce_{0.05}Yb_{0.1}Co_4Sb_{12}$ showed ~30% <u>decrease</u> in PF @ ~ 500-600 K hightarrow Materials that behave this way after thermal cycling may be an issue.

Pacific Northwest


Summary

- Several *n*-type (InCe)-based skutterudite compounds fabricated and their TE and structural properties characterized
 - $In_{0.2}Co_4Sb_{12}$, $In_xCe_yCo_4Sb_{12}$ & $In_xCe_yYb_zCo_4Sb_{12}$
 - ZT_{peak} ~ 1.0 1.4 @ ~ 600K
 - Young's modulus generally lower than base Co₄Sb₁₂ material, but higher than conventional TE materials
 - Poisson's ratio lower than base Co₄Sb₁₂ material and conventional TE materials
 - CTE (25 to 400°C) is lower than base Co₄Sb₁₂ material and conventional TE materials
- *n*-type (In,Ce)-based skutterudites showing good structural stability after thermal cycling
 - 313 K to 673 K (200 cycles)
- Power factor increases after thermal cycling compounds in In_xCe_vCo₄Sb₁₂
 - Thermal cycling may be major differentiator in skutterudites
- *p*-type materials development (In,Ce) $Fe_xCo_{4-x}Sb_{12}$ (ZT ~ 0.5 at 600K)
- Validation of TE properties with third party testing (ORNL)

(In Ce)Co₄Sb₁₂ diced samples

