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Project Goals 

� Utilize PCCI combustion technology to optimize 
fuel economy while meeting EPA 2010 
emission targets and customer requirements 
for noise and drivability 
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� Speed
� IMT (effective)
� Swirl
� Nozzle

• # holes
• Angle
• Flow
• AFM (hydro-grind)
• L/D – K factor

� Injection
• Rail P
• Shape
• Pilots
• Post
• Main

� NOx
� PM (smoke)
� HC (miss-fire)
� Fuel consumption
� Power
� Peak cylinder pressure
� Turbine inlet temp
� Turbo speed
� Surge margin
� Choke margin
� Compressor outlet temp
� Soot in oil
� Combustion noise
� Heat rejection
� Cylinder wall heat flux (hot 

spots)
�…

� Fresh A/F (Lambda)
� Intake O2 fraction
� Residual
� Piston Bowl

• Geometric 
compression ratio

• Bowl shape
� ….
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Critical Parameters 
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Narrowing Domain … 
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Narrowing Domain … 

� Speed 
� IMT (effective) 
� Swirl 
� Nozzle 

• # holes 
• Angle 
• Flow  
• AFM (hydro-grind) 
• L/D – K factor 

� Injection 
• Rail P 
• Shape 
• Pilots 
• Post  
• Main  

� Fresh A/F (λ) 
� Intake O2 fraction 
� Residual 
� Piston Bowl 

• Geometric 
compression ratio 

• Bowl shape 
� …. 

Piston bowl and nozzle 
characteristics recommended 
by KIVA computational 
analysis 

Bowl 20 



Experimental Method 

� Utilized Cummins single cylinder 6.7L test 
engine 
� Used a space filling test plan 
� Rail pressure 
� Two pilot injections 

Analysis with� Main injection 
response surface� Post injection 

� O2 intake fraction quadratic fits 

� Fresh A/F ratio (reduced models) 
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Experimental Results


� fsNOx 
� fsPM via smoke (FSN) 
� HC 
� Fuel consumption 
� Combustion noise 

Extremely important 
parameter for the pickup 
truck and SUV market – 
difficult technical hurdle 
for PCCI combustion 
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Noise Measurement, Calculation … 

� Simulation of noise meter analyzes each of 100 
total cycles per data point, results are tabulated 
as average of these noise calculations plus 
deviation 
� Method: FFT of cylinder pressure → filtered 


gains applied → inverse FFT → RMS noise 

power calc → customer acceptance criteria
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100 Cycle Noise PCCI Combustion


More detailed 
analysis of 
these last two 
cycles 

Motoring noise 
is ~78 dBa 
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Cylinder Pressure Comparison 

Curves represent 
difference of 3.6 dBa 
combustion noise 

Have noted 
differences in ringing 
from cycle to cycle 
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FFT and Meter Gains 
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Sound Pressure (after gains) 



13DEER August 24, 2006 

Inverse FFT 

Noise dominated by 
conditions at cylinder 
pressure inflection, 
start of heat release 

Zeroing out sound pressure after TDC results in 
only ~0.1 dBa shift in mean noise … ringing 
does not seem to add much 



Rate of Pressure Change
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correlates with mean noise 
calculations, curve fits to 
datasets show similar 
correlation coefficients 
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Repeatability of Noise


� Engine test repeat points also showed 
substantial variation of mean noise levels ~ 1 
dBa, cycle/cycle variation was also of this order 
� Analysis of fuel system and air charge conditions 

did not account for observed noise variation 
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Noise Variations and 
Apparent Heat Release … 

Mean noise = 88.6 dBa 
Std Dev = 0.9 dBa 

Mean noise = 91.4 dBa 
Std Dev = 0.6 dBa 

AHRR Variation 
AHRR Variation 





Cycle to Cycle σ
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Combustion Noise Conclusions 

� Substantial cycle to cycle and mean variation was noted 
for early PCCI combustion with multi-pulse injection 

� Analysis of fuel system and air charge inputs did not 
account for variation 

� Analysis technique appears to be capturing fundamental 
noise phenomena 

� Early PCCI heat release process may have inherently 
higher variation causing observed noise variation … 
longer ignition delay has more variation in subsequent 
heat release … more investigation required 
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Design of Experiment Fits 
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Optimization …


� The correlation of experimental results were adequate 
with noted variation in combustion noise 
� Rail pressure 
� Two pilot injections 
� Main injection 
� Post injection 
� O2 intake fraction 
� Fresh A/F ratio 

� Resulting reduced quadratic models were incorporated 
in an optimizing software code 

� Results for minimum combustion noise meeting 
emission constraints were obtained for various A/F ratio 
limits … 
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PCCI Noise optimization … 

Optimization tool using coefficients from 
reduced model .. Min noise at each A/F 

NOx < target 

FSN < target 

Required rail pressure drops 
as allowed A/F increases … 



Summary 

� Experiments indicate that high A/F and EGR 
rates are critical for meeting emission and 
noise targets 
� Injection pressure requirements are reduced 

with higher A/F 
� Noise targets are difficult to obtain with early 

PCCI combustion, significant variation noted 
with multi-pulse pilot with early main injection 
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