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Project Overview

• Project is ongoing but re-focused each 
year to address current DOE and industry 
needs

– FY10 focus: LNT dopant study 
– FY09 focus: Component LNT study
– FY08 focus: Desulfation of sectioned 

LNTs and sulfur coverage on Pt

• Fuel penalty
– Regeneration & desulfation of emission 

controls require extra fuel consumption
• Durability and Cost

– Large built-in PGM margin required to 
meet durability requirements/emissions 
standards

Timeline

Budget

Barriers

• Funding received
– FY09:  $100K
– FY10:  $200K

• $150K allocated to date
• Anticipate similar funding for FY11

Partners
• Collaborators and their roles  

– CLEERS: evaluation protocols
– Center for Nano-phase Material 

Science (CNMS): catalyst 
synthesis

– Umicore: catalyst supplier
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Relevance and Objectives
• LNTs are attractive for the reduction of NOx emissions in both 

lean-gasoline and diesel applications
– No additional injection ports or reductant storage necessary

• LNTs have been introduced commercially, BUT… 

HIGH COSTS AND DURABILITY LIMIT FURTHER 
IMPLEMENTATION

Objectives:
• Investigate methods for improving performance and/or 

durability of LNTs, such that PGM costs can be reduced
• Determine role of individual components in a commercial LNT 

during desulfation of lean NOx traps to improve understanding
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Two-tiered Approach
• Explore mixed metal oxides for storage phase of LNTs; Ba substitution
• Identify material effects and attempt to correlate to performance changes
• Work with CNMS (BES funded user center)
• Synthesize LNTs using aqueous techniques

• Commercial catalysts are complex; made of several phases or components
– Formulations derived from empirical and fundamental catalysis research

• Investigate functionality of individual components during sulfation and desulfation
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Milestones for FY 2010

• Publish the collaborative effort with the Center for Nanophase Material 
Science on Ba-dopant effects on LNT performance (September 2010).
– Submitted April 2010 to Catalysis Today

• Publish efforts on Umicore component sulfation/desulfation study 
(September 2010).  
– On target, manuscript being circulated amongst co-authors
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Summary of Technical Accomplishments

• Confirmed the improvement in performance and desulfation 
properties with 5%mol Ca introduction into the BaO storage phase 
of an LNT catalyst 

• Demonstrated sequential effect of Ca addition from 5% to 100%
– Improvement is due to a synergistic effect as Ca-only catalyst 

results in higher desulfation temperatures

• Determined sulfur stability and desulfation characteristics of 
individual components of a commercial LNT catalyst
– several findings, two to be discussed
– see supplemental slides for additional details
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Impact of Dopants in Ba-based 
LNT Catalysts
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Can Ba storage/release chemistry be 
modified by lattice substitutions?
• Typical storage material is Ba-only

• BaO structure is defined by its 
covalent radius and charge
– rBa = 2 Å
– Charge in Lattice = +2

• Substituting Ba with other metals 
can have multiple effects on the 
material structure
– Lattice spacing
– Oxygen vacancies
– Ba-vacancies

• Do nanoscale material changes 
affect performance?
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FY2009 efforts show Ca-substitution leads to 
improved NSR performance and desulfation

• Ca+Ba sample yields similar NOx 
conversion performance to Ba-only
– Some improvement at 300 and 

400ºC compared to Ba-only 
• Ca+Ba sample releases more sulfur at 

lower temperatures
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Ca-substitution expanded to study 
additional concentrations

• Same base catalyst: 1.5%wt Pt/γ-Al2O3
• Ca substitution levels

– 5 mol% 
– 10 mol%
– 20 mol%
– Ca-only

• BaCO3 identified again
– decreases with increasing

Ca content

• Ca-only sample results in 
amorphous/nanocrystalline
Ca-phase

10 15 20 25 30 35 40 45 50
2-theta (degr.)

Ba-only
5%Ca+Ba
10%Ca+Ba
20%Ca+Ba
Ca-only

Ba
 C

O
3

10 15 20 25 30 35 40 45 50
2-theta (degr.)

Ba-only
5%Ca+Ba
10%Ca+Ba
20%Ca+Ba
Ca-only

Ba
 C

O
3

NSR Pt Ba Ca
Catalyst (wt%) (mol%) (mol%)

Pt/Al2O3 1.5% - -
Ba-only 1.1% 20% 0%

5%Ca+Ba 1.1% 19% 1%
10%Ca+Ba 1.1% 18% 2%
20%Ca+Ba 1.1% 16% 4%

Ca-only 1.1% 0% 20%
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Ca-substitution continues to show some 
performance benefits compared to Ba
• Ca-only NSR catalyst shows significantly better performance at 400ºC

– 18% greater NO converted than Ba-only
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Ca-only phase results in more stable sulfates; 
synergistic effect occurs w/ 5-10% substitution

• Sulfate at 400ºC to 5 mg S/gcat

• 5% Ca+Ba releases the most 
sulfur at low temperatures 

5%Ca+Ba > 10%Ca+Ba > Ba-only
Ba-only > 20%Ca+Ba > Ca-only

• Ca-only has the most 
“high-stability” sulfates

• Since Ca substitution leads to 
less stable sulfates there must be 
a synergistic effect
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Although Ca-only has most stable sulfates, its 
performance is minimally impacted

• 100% Ca is most tolerant to sulfur
– 10% Ca+Ba is most affected

• Sulfur tolerance is very important factor
– LNT can go further between de-S
– Fewer desulfations 

• less fuel consumed
• less impact on PGM
• less initial PGM needed

• 100% Ca-storage phase is the most 
sulfur adsorbant storage material

• Ba-only releases the most sulfur during 
rich cycle at 400°C
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Study of functionality of commercial 
LNT Components
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Commercial LNTs are complex 
multicomponent devices
• CLEERS reference LNT catalyst

– provided by Umicore
• Ba-based sample with Pt, Pd and Rh
• Relies on Al2O3, CeOx-ZrO2, and 

MgAl2O4 as supports
• Several groups working to understand 

how some of these phases contribute to 
LNT performance
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• Our focus is on 
sufation/desulfation:
– How does Ba/Ceria-

zirconia differ from 
Ba/alumina?

– What is role of 
MgAl2O4?

TPR
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• Umicore catalyst relies on Ceria-
Zirconia as a Ba support
– Alumina most widely studied

• Ceria-Zirconia is a known oxygen 
storage component (OSC)
– Shown to have good low 

temperature NOx reduction

• Sulfation studied at 400°C while 
cycling between lean and rich
– PBA samples have sharp SO2

release profile

• Ceria-Zirconia supported catalysts 
trap more SO2 during cycling

Using Ceria-Zirconia vs. Alumina as a 
support impacts LNT chemistry

SO2 breakthrough measured 
while lean-rich cycling at 400°C

= Pt/Alumina
= Pt/Ceria-Zirconia
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Ceria-Zirconia decreases required 
desulfation temperature significantly
• Onset of SO2 release is lower for 

Pt/Al2O3, but release profile is broad
– T20% = 464°C; T90% = 704°C
– Demonstrates heterogeneity of sites

• Pt/Ceria-Zirconia has sharp release 
profile
– T20% = 494°C; T90% = 570°C

• Introducing Ba transforms release 
profiles
– Only minor sulfur release observed 

from alumina supports 
– PBCZ sulfur releases at significantly 

lower temperature; 35-60°C
• PBA: T20% = 570°C; T90% = 855°C
• PBCZ: T20% = 535°C; T90% = 797°C

Sulfur release measured during 
400-1000°C temperature ramp
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Umicore catalyst has high MgAl2O4 content but 
mechanism of benefit is unknown
• Up to 40%wt MgAl2O4 (MA) in the washcoat
• Not strongly-coordinated with platinum group metals (PGM)

• Sulfation profile on MA-only results in fast SO2 breakthrough
– With PGM, it is an effective SO2 trap (PMA)

• Physical mixture of PA+MA mimics PMA
SO2 breakthrough measured 

while lean-rich cycling at 400°C
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Sulfation/Desulfation of Umicore-like 
sample suggests Mg-Al adsorbs SO2
• PBCZ+MA most closely mimics Umicore 

formulation
• Additional sulfur stored on PBCZ+MA
• Desulfation shows small amount of 

extra SO2 released at ~800ºC
– Mg-Al phase participates in sulfur 

trapping and perhaps transport 
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Collaborators and Partners

• CLEERS
– Discussions and evaluations protocols

• Umicore
– Catalyst supplier for the commercial LNT

• Center for Nanophase Materials Science (CNMS)
– Basic Energy Science funded user facility at ORNL
– Prepared doped storage materials 
– Performed materials characterization

• High Temperature Materials Laboratory (HTML)
– ORNL user facility funded by EERE 
– Additional materials characterization 
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Future Directions (Beyond FY10)
• Increase materials characterization efforts to link performance effects to material 

property
– Will rely on HTML user center proposals
– Implement DRIFTS studies to look at Ca impact on nitrate/sulfate bonding effects

• Effects of durability
– Is benefit maintained after several thermal cycles or do the phases separate
– Repeated sulfation/desulfation cycles

• Only desulfate to typical desulfation temperatures, i.e. 700°C

• Support effects
– Umicore component effort suggest changing support would affect results
– Study Ceria-Zirconia versus Alumina

• Multicomponent studies  Tertiary oxides
– Very interesting work recently reported from GM regarding doped perovskites 

with drastically reduced PGM levels
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Summary
• Relevance: 

– LNTs are attractive for the reduction of NOx emissions in both lean-gasoline and 
diesel applications

– High costs and durability limit further implementation of LNTs 
• Approach:

– Investigate novel formulations to guide material discovery and improve LNTs
– Investigate functionality of individual components of commercial catalysts during 

sulfation and desulfation
• Collaborations:

– Umicore catalyst supplier and collaboration with other VTP projects: CLEERS, PSAT, 
CRADAs, UK-CAER

– BES-funded Center for Nanophase Materials Science (CNMS)
• Technical Accomplishments:

– Demonstrated benefits of the addition of Ca-dopants to LNT storage phase
– Identified functionality of components of a commercial LNT catalyst

• Future Work:
– Increase materials characterization to help guide materials models for doped LNTs
– Investigate support effects of Ca-doped samples; particularly ceria-zirconia
– Explore low PGM catalysts tertiary oxide materials (GM-reported doped pervoskites)


	Slide Number 1
	Project Overview
	Relevance and Objectives
	Two-tiered Approach
	Milestones for FY 2010
	Summary of Technical Accomplishments
	Impact of Dopants in Ba-based �LNT Catalysts
	Can Ba storage/release chemistry be modified by lattice substitutions?
	FY2009 efforts show Ca-substitution leads to improved NSR performance and desulfation
	Ca-substitution expanded to study additional concentrations
	Ca-substitution continues to show some performance benefits compared to Ba
	Ca-only phase results in more stable sulfates; synergistic effect occurs w/ 5-10% substitution
	Although Ca-only has most stable sulfates, its performance is minimally impacted
	Study of functionality of commercial �LNT Components
	Commercial LNTs are complex multicomponent devices
	Using Ceria-Zirconia vs. Alumina as a support impacts LNT chemistry
	Ceria-Zirconia decreases required desulfation temperature significantly
	Umicore catalyst has high MgAl2O4 content but mechanism of benefit is unknown
	Sulfation/Desulfation of Umicore-like sample suggests Mg-Al adsorbs SO2
	Collaborators and Partners
	Future Directions (Beyond FY10)
	Summary
	SUPPLEMENTAL SLIDES
	Responses to Previous Year Reviewers’ Comments 
	Publications and Presentations
	Critical Assumptions and Issues
	Pt/Ba/Alumina + Pt/Ceria desulfation profiles results in more distinct S release
	Ceria-Zirconia also appears to modify nitrates stored; Peak shift identified 
	Why does sulfur pulse during cycling on Pt/Ba/Alumina but not on Pt/Ba/Ceria-Zirconia?
	Proposed scheme: oxygen storage in ceria enables sulfation during rich phase
	Pt proximity to sulfate not critical for sulfur trap or release



