

... for a brighter future

Post-Shred Materials Recovery Technology Development and Demonstration

Bassam Jody, Principal Investigator Energy Systems Division Argonne National Laboratory May 22, 2009

Project ID # Im_29_jody

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

U.S. Department of Energy

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview: Recycling Technology R&D

■ Timeline

- Start: FY 2003
- Finish: FY 2008*
- Percent Complete: 100%

Budget

- Total project funding
 - ➢ DOE, ~ \$1000K/yr
 - Cost-share, ~ \$500K/yr
- Funding received in FY '08 and '09
 - ➢ FY '08, \$365K
 - ➢ FY '09, \$0K
- * Project completion occurred in 2009 with carryover from 2008

Barriers Addressed

- Lack of cost-effective technology to recover lightweighting materials from end-of-life vehicles
- The goal is: Develop technology to recover lightweighting materials from end-of-life vehicles

Partners

Interactions/Collaborations

- USCAR, Vehicle Recycling Partnership
- American Chemistry Council—Plastics Division
- Institute of Scrap Recycling Industries
- National Recovery Technologies
- Changing World Technologies (CWT)
- Individual Shredder Operators
- MBA Polymers
- Troy Polymers
- Salyp
- VW SiCon
- Delft University / Recycling Avenue
- Project Lead
 - Argonne National Laboratory

Objectives: Develop, demonstrate and benchmark technology for the cost-effective recovery of lightweighting materials, including plastics, and other materials from post-shred residue

Goals

- Benchmark automotive materials recycling state-of-the-art and disseminate information to stakeholders
- Determine the performance of emerging technologies with regard to yield, purity, efficiency and cost
- Develop an integrated process for optimum recovery of materials from shredder residue
- Demonstrate technical and economic feasibility of processes for materials recovery from ELV and shredder residue
- Facilitate transfer of technology to industrial practice

FY 2008 Milestones

Major Milestones	Planned Completion Date	Status
Complete engineering designs and economic analysis of the Argonne process based on pilot- plant data	3 rd Qtr	Done
Complete design of Argonne's upgrade system for separation of wood and rubber from the recovered polyolefins for the Argonne validation plant	3 rd Qtr	Done

Approach: Process development and demonstration

- Characterize shredder residue from a number of sources to determine composition variability
- Conduct bench-scale and large-scale process/technology tests to benchmark technologies
- Build and operate a pilot-plant for the separation of shredder residue to produce recovered materials for market evaluation and to provide "control" samples of materials for testing of alternative technologies, as appropriate
- Conduct cost and performance analysis of alternative technologies to establish the business case for the technologies and to identify technology gaps
- Design and build a validation plant to confirm results at a large scale

Background: What is shredder residue?

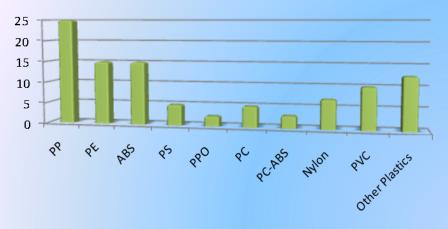
- Complex mixture of waste resulting from the shredding of vehicles, other durables, and scrap metal to recover metals for recycling
- Over 5 million ton/yr generated in the U.S. and over 15 million ton/yr worldwide

Starting Shredder Residue

Starting Shredder Residue

Accomplishments: What We Have Learned with Regard to Post-Shred Technology Development

- Essentially, "shredder residue is shredder residue" all shredder residues contain recoverable polymers and residual metals
- Process technology developed at Argonne achieved high yields and high quality of the targeted materials, others have recovered polyolefins but at lower yields and/or quality
- Argonne and MBA Polymers confirmed that the styrenics fraction from shedder residue can be upgraded and recycled
- Troy Polymers successfully converted polyurethane foam from shredder residue to polyol initiators
- CWT confirmed that the organic fraction of shredder residue can be used as a feedstock to produce alternative hydrocarbon gases, liquids and solids


Characterized Shredder Residue

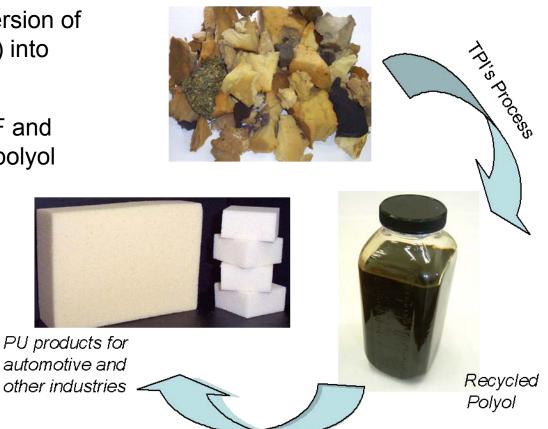
- Processed 150 tons of shredder residue
- Compared U.S. to EU shredder residue
- Performed a detailed material balances on shredder residue constituents

	Metals PU Foam
	Oils & Dirt
Polymers	Lights
	Moisture and
	Inorganics

	Shredder	Overs ized	Oversized	Fines	Ferrous	N-Ferrous		Polymer
	Residue	Heavies	Foam rich	(<1/4 in.)	Rich	Rich	Lights	Conc.
Weight (lbs)	40,000	2,148	756	17,640	656	1,468	1,968	10,044
РР	1,075	0	0	0	17	33	129	897
PP (filled)	403	0	0	0	0	0	9	393
ABS	763	0	0	0	5	9	13	737
PE	941	0	0	0	9	18	85	830
HIPS	261	0	0	0	4	8	15	234
Nylon	379	0	0	0	4	9	19	347
PVC	512	0	0	0	0	0	0	511
РРО	139	0	0	0	0	0	4	135
PC-ABS	151	0	0	0	0	0	1	150
РС	212	0	0	0	0	0	12	200
Other Plastics	597	0	0	0	1	0	17	579
Rubber	4,505	20	0	0	6	172	61	4,246
PU Foam	273	3	0	0	1	23	9	237
Wood	239	0	0	0	0	0	0	239
Metals	2,911	1,117	0	0	590	954	0	249
Foam, Fiber and others	21,320	1,008	756	17,640	19	241	1,597	59
Moisture	5,320	0	0	0	0	0	0	0
Total	40,000	2,148	756	17,640	656	1,468	1,968	10,044

Weight Percent of Recovered Plastics from Shredder Residue

Benchmarking and R&D


- Benchmarking
 - Salyp NV, VW-SiCon and MBA Polymers
- Process R&D
 - Troy Polymers glycolysis of polyurethane foam
 - CWT thermal-depolymerization process
 - National Recovery Technology (SBIR)
 - Argonne materials recovery process development
- Benchmarking has been completed on numerous unit operations for concentrating materials targeted for recovery, such as:
 - Water tables
 - Mineral jigs
 - Kinetic Density Separator (KDS) (Recycling Avenue/Delft University)
 - Optical sorters
 - Electrostatic separators
 - Commercial scale crushers, grinders and granulators

Troy Polymers, Inc. --Glycolysis Process

- Troy Polymers, Inc. (TPI) patented glycolysis process for the conversion of mixed polyurethane foam (PUF) into polyol initiators
- TPI processed ~1,200 lb of PUF and produced about 100 gallons of polyol initiators
- The polyol initiators have been evaluated by four polyurethane suppliers
- TPI is pursuing commercial development

PU landfilled scrap

Changing World Technologies --Thermo-chemical Conversion

- The Changing World Technologies (CWT) thermo-depolymerization process converts industrial waste to oils, gases, and solids
- CWT's first commercial facility based on this technology was commissioned in April 2003 and converts 200 ton/day of turkey offal

Changing World Technologies ---Thermo-chemical Conversion, Continued

- CWT's thermo-depolymerization process is potentially applicable to the organic fraction of shredder residue
- A proof-of-concept bench scale test confirmed the technical feasibility of the process
- A controlled 2,000 lb test run has been completed
 - Confirmed the bench scale results
- Economic viability of thermo-chemical conversion of shredder residue organics to fuels is not established.

National Recovery Technologies, Inc.

- NRT was awarded a phase II SBIR for the "Development of High Speed Multispectral Imaging for Sorting Automotive Plastics"
 - Progress has been made in integrating light gathering optics
 - Analysis of dark colored plastics at high throughputs has not been achieved
- Argonne supplied NRT pre-identified individual plastics, a polymer concentrate, and concentrated fractions of the polyolefins from shredder residue
- Work continues on a phase III flexible high speed computing instrument, leveraged off the phase II technology
- Is not applicable to dark colored plastics from shredder residue at this time

NRT Commercial IR Bottle Sorter

NRT Commercial IR Flake Sorter

Argonne Recycle Process R&D -- Mechanical Separation Process Details

- Our approach is to separate the polymers at a high yield as a concentrate from the shredder residue, and then to separate the individual plastics from the concentrate
- Designed, built and installed 1/10th scale bulk separation pilot-plant
- Processed about 150 tons of shredder residue
 - Recovered over 95% of the residual metals
 - 5-15 weight percent of the residue
 - Recover 90% of the targeted polymers
 - 20-50 weight percent of the residue
- Work on the separation of the complex shredder residue serves as a spring board for developing technology for the separation and recycling of lightweighting materials of the future

Argonne's Mechanical Separation Pilot-Plant

Argonne Recycle Process R&D -- Wet Separation Process Details

- Designed, built and installed a 1,000 lb/hr wet-density/froth flotation pilot-plant
- Developed process operating conditions for selective separation of materials from the polymer concentrate
- Designed and built a 5,000 lb/hr wet-density/froth flotation separation module
- Produced about 3 tons of 95% polyolefin concentrate

Argonne's Wet-Density/Froth Flotation Pilot-Plant

Argonne Recycle Process R&D-- Confirm the Technical Feasibility of Reusing Argonne's Recovered Polyolefins

Mold trials were successful for producing automotive parts from the polyolefins fraction at blend rates with regrind of 0%, 25%, 50%, and 75%

Steering Column Cover

Battery ⁻	Tray
----------------------	------

Spare Tire Base Plate

Knee Bolster

Objectives for FY 2008 and FY 2009

- Design a full-scale validation plant for the recovery of automotive polymers from shredder residue based on R&D done in FY '03 - FY '08
- Update economic analysis as per quotes for major equipment
- Conduct "All Auto" trials and process the resulting shredder residue
- Conduct the study to assess the potential release of nano particles from auto parts containing nano materials when recycled (USCAR-VRP interested in this study)

Summary

- Process development R&D for shredder residue recycling will be completed in FY '09
- The success of the research resulted in a 20 ton/hr validation plant which is under construction
- Eighteen published journal papers, conference papers and patents
- Project recognized with a number of awards
 - SAE 2007 Transaction Set "best of the best technical papers of 2007"
 - Global Plastics Environmental Conference (GPEC) Lead Technical Conference Paper for 2007
 - TMS Extraction and Processing Division Technology Award for 2008
 - GPEC Award for 2007, Enabling Technologies in Processes & Procedures, Environmental Division, Society of Plastics Engineers

