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• PI joined BATT and LBNL 
in FY09

• Project start Sep ‘09
• Project end Aug ‘11
• 40% complete

• Barriers addressed
– Gravimetric and volumetric 

Energy Density
– Cycle life
– Safety

• Funding FY09: $420k
• Funding FY10: $440k

Timeline

Budget

Barriers

• Persson, Doeff, Richardson, 
Chen, Kostecki, Battaglia 
(LBNL), Grey (SUNY-SB)

• D. Milliron (MF, LBNL), A. 
Mehta, J. A. Hayter (SSRL, 
Stanford), M. Casas-Cabanas 
(Caen, France), M.R. Palacin 
(ICMAB, Spain)

• Project lead: John Newman

Partners

Overview
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• To achieve cycle life and energy density targets using high
voltage (>4.5 V) spinel electrode materials.
– barriers: energy density, cycle life, safety

• To assess the viability of materials that react through
conversion reactions as high capacity electrodes.
– barriers: energy density, cycle life

• To investigate new phases with more than one electron per
transition metal available for electrochemical reactivity.
– barriers: energy density

Relevance - Objectives
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Milestones
May 09 Set up research lab and hire a postdoctoral researcher.

Apr. 09 Evaluate the stability of the spinel framework upon copper extrusion and re-
injection in CuMn2O4. 

Sep. 09 Characterize LiNi1/2Mn3/2O4 prepared using different synthesis methods. 
Evaluate the energy/power density and cycle life characteristics. 

Mar. 10 Report the cycling performance of LiNi1/2Mn3/2O4 made solvothermally . 

Jul. 10 Choose promising Cu-M-O (M=transition metal, Al, P, Si) phases and test them.

Sep. 10 Report the characterization of cycled NiO electrodes by NMR, XAS and TEM. 

Sep. 10 Synthesize Sn-based nanoalloys with controlled microstructure and report their 
performance as electrodes.  
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• Understand the correlation between crystal structure,
nanostructure, composition and electrochemical performance in
LiNi1/2Mn3/2O4.
– Synthesize samples with controlled particle sizes and shapes.
– Study changes in structural order with synthesis conditions.
– Evaluate performance at moderate and high rates.

• Get a complete picture of the interactions that govern activity of
materials that react through conversion reactions.
– Combine spectroscopic, imaging and electroanalytical techniques.
– Assess the origin of the large voltage hysteresis observed.

• Investigation of new Cu-M-O phases that can react via a copper
extrusion mechanism.
– Study of the stability of the framework upon Cu extrusion/re-insertion. M-O

framework may remain stable (no conversion), leading to enhanced life.
– Evaluation of the effect of the framework on the voltage at which extrusion

takes place.

Approach/Strategy
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Technical accomplishments:
LiNi1/2Mn3/2O4, synthesis, XRD
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• Samples synthesized from hydroxide precursors: direct calcination for 12 h (OH,
black), milling+calcination for 1-2 h (BM, red).
• Cell parameter depends on synthesis temperature.

*

*

**

*

OH BM*: sample holder

•: OH
: BM
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Technical accomplishments:
LiNi1/2Mn3/2O4, order-disorder transition

OH

BM

• Neutron diffraction (ND): peaks between 10-30° denote Ni-Mn ordering.
• Nuclear Magnetic Resonance (NMR): presence of multiple, broad peaks denotes
disorder.
• Disorder-order-disorder transition upon heating. Different degrees of ordering exist.

ND
NMR

*: diamagnetic impurity
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Technical accomplishments:
LiNi1/2Mn3/2O4, microstructure

500 C 700 C 900 C

OH

BM

SEM

• Notable increase in particle size occurs above 700°C.
• Particle size, shape distribution is more homogeneous for BM (shorter calcination t,
no pellet is made).
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Technical accomplishments:
LiNi1/2Mn3/2O4, Mn3+ content
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• Capacity at 4 V suggests presence of different amounts of Mn3+, depending on
synthesis temperature.
• XANES data indicates differences in Mn3+ are very small.
[Results are equivalent between BM and OH]
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Technical accomplishments:
LiNi1/2Mn3/2O4, electrode properties

•: OH
: BM

500°C
600°C
700°C
800°C
900°C

C/10 C C

• Performance at moderate and high rates improves with synthesis temperature. Particle
size seems to be more critical than order-disorder or capacity at 4 V (Mn3+ content).
• 1st cycle coulombic efficiency improves with synthesis temperature ⇒ bigger particle
sizes are better to avoid side reactions.
• No need to go nano to get high rate performance for LiNi1/2Mn3/2O4.
• BM, 900°C: 120 mAh/g (C/10), 115 mAh/g (C) after 40 cycles. Best performance.
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Technical accomplishments:
LiNi1/2Mn3/2O4, influence of particle morphology

exMnO2

exMnCO3

• exMnO2/exMnCO3: made from solvothermal MnO2/MnCO3 at 750°C.
• BM, 900°C: Best performance, 114 mAh/g after 150 cycles at C rate.
• Nanostructuring does not appear to produce an advantage even at high rates.
• New collaboration with V. Battaglia (BATT): advanced battery testing of BM, 900°C.

BM

exMnO2

exMnCO3 BM

exMnO2

exMnCO3



12

Technical accomplishments:
Mechanism of conversion reactions, NiO: case example

• Conversion reactions result in very high capacities.
• Main obstacle is low energy efficiency due to voltage hysteresis.

─ State-of-the-art and challenges recently reviewed (w/ M.R. Palacin, ICMAB): Adv.
Mater., 2010, in press.

• NiO taken as case example.
• Hyteresis changes with cycle number.
• Different “equilibrium” potential values obtained with potentiostatic and OCV
experiments. Side processes during relaxation (circled area).

C/5
Potentiostatic
OCV
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Technical accomplishments:
Mechanism of conversion reactions, NiO: case example

200 0 -200
δ (ppm)

Discharge:
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absorption
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Average absorption

• TXM of electrodes: chemical speciation at ~30 nm resolution.
Project started with J.A. Hayter (SSRL) to identify (un)converted areas.
• NMR at different Li contents (C.P. Grey, SUNY-SB):

― ~0 ppm: electrolyte and Li2O.
― ~50 ppm: unexpected, Li-O-Ni contacts (not only Li2O+Ni)?

TXM

NMR
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CuAl2O4

CuMn2O4

CuCr2O4

Cu3(PO4)3

CuMoO4

CuMoO4

Technical accomplishments:
Electrochemical testing of Cu-M-O phases

• Cu extrusion at different V. Only reversible capacity for CuCr2O4 and CuMoO4.
• CuMoO4: high voltage, but large hysteresis + poor retention.
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Collaboration and 
Coordination with Other 

Institutions
• Within BATT:

– Dr. K. Persson (LBNL): atomistic modeling as driver for identifying novel phases
that react through Cu extrusion.

– Dr. R. Kostecki (LBNL): understanding surface reactivity in cathode materials.
– Dr. V. Battaglia (LBNL): advanced electrode testing of spinel electrodes.
– Prof. C.P. Grey (SUNY-SB): MAS-NMR of electrode materials.

• Outside BATT:
– Dr. M. Casas-Cabanas (ENSICaen, France): neutron diffraction of electrode

materials.
– Dr. M.R. Palacin (ICMAB): electroanalytical study of conversion reactions.
– Drs. A. Mehta, J.A. Hayter (SSRL): XAS and TXM of electrode materials.
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• High voltage spinel phases:
– Transfer BM, 900 C to Battaglia group for advanced battery testing

(e.g., using alternative electrolytes).
– Control Mn3+ contents, ordering in BM and solvothermal (large particle

size) samples and evaluate effect.
– Study surface side reactions (e.g., using soft X-ray spectroscopy);

collaboration with Kostecki group starting to evaluate effect of coating
and carbon additives. Need to minimize coulombic inefficiencies.

• Conversion reactions:
– Evaluate the effect of temperature (50-150 C) on hysteresis (is it kinetic

or thermodynamic?).
– Continue study of mechanism of reaction using NMR, TEM, TXM and

XAS. Relate mechanism to hysteresis (milestone set for Sep. ’10).

• Cu-containing phases:
– Study what controls the reversibility of the reaction by assessing

changes upon Cu extrusion.
– Continue screening for phases that may show high stable capacities

(go/no-go decision will be made at the end of the fiscal year).

Future Work
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• Mn3+ content and Ni-Mn ordering in LiNi1/2Mn3/2O4 are highly
dependent of method and temperature of synthesis.
– MAS-NMR: very suitable tool to detect degrees of ordering.

• Comparison of different LiNi1/2Mn3/2O4 samples indicates
particle size is a critical factor on performance. No need to
use nanoparticles to get good life at high rates (C).

• Analysis of the origins of hysteresis in conversion reactions
has started.
– Preliminary results suggest the mechanism is not as simple as

previously thought.
– Advanced imaging + spectroscopic techniques to assist in the study

are in process of being developed.
• Different Cu-M-O have been tested as electrodes.

– Only CuMoO4 and CuCr2O4 show reversible capacities. Large
hysteresis and poor cycle life observed.

Summary
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