

Phase Behavior and Solid State Chemistry in Olivines

Thomas J. Richardson Lawrence Berkeley National Lab May 20, 2009

es_25_richardson

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- PI Joined BATT 2001
- Cathodes Task Started 2001
- Anodes Task Started 2006

Barriers Addressed

- Cycle life
- Abuse tolerance
- Energy density

Budget

- FY08 \$500K
- FY09 \$500K
- FY10 TBD

Partners

- Collaborations: Grey (Stony Brook) Kostecki, Doeff, Cabana (LBNL) Gabrisch (UNO), NCEM, ALS
- Interactions: Zaghib (HQ)
- Project lead: John Newman

OBJECTIVES

- Synthesize and evaluate new electrode materials with improved energy density.
- Investigate the relationships of structure, morphology and performance of electrode materials, with emphasis on phosphates and intermetallics.
- Explore kinetic barriers and utilize the knowledge gained to design and develop electrodes with high energy density, good rate performance and enhanced stability.

MILESTONES

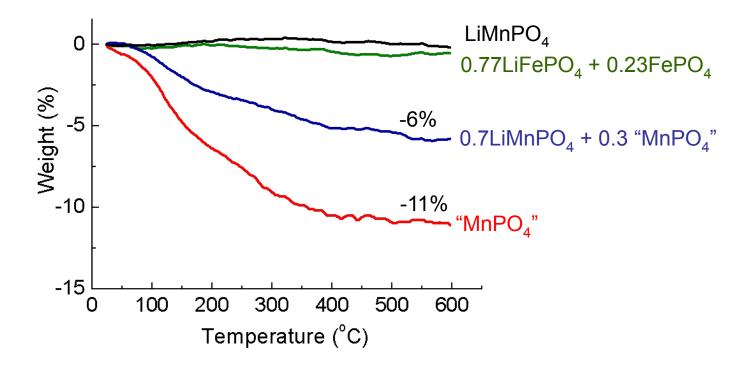
June 2008	Report rate and cycling performance of lithium alloy and/or cermet electrodes with capacity exceeding 400 mAh/g.	
July 2008	Report results of phase transition, rate and stability studies of Li_xMnPO_4 cathode materials.	
June 2009	Report rate and cycling performance of Li alloy and/or intermetallic electrodes with capacity exceeding 500 mAh/g.	
July 2009	Report on mechanisms governing LiMnPO ₄ performance and measures to improve utilization and rate.	
September 2009	Report experimental results on new cathode materials.	

APPROACH

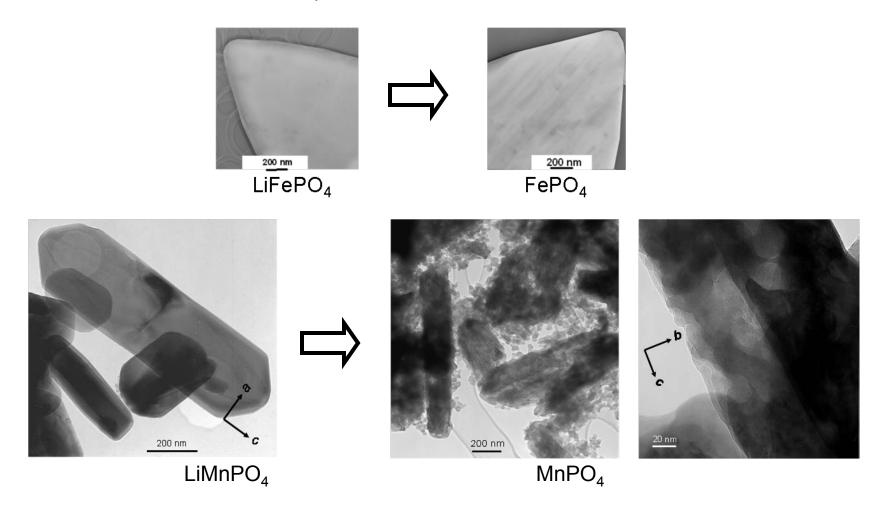
- Identify candidate electrode compositions by systematic analysis of phase diagrams and literature reports.
- Synthesize novel materials and/or unique structures for examination using XRD, electron microscopy, vibrational spectroscopies, and electroanalytical techniques.
- Characterize known and modified electrode materials (e.g. LiMnPO₄) and establish correlations between crystal structure, morphology and performance.

APPROACH – LiMnPO₄

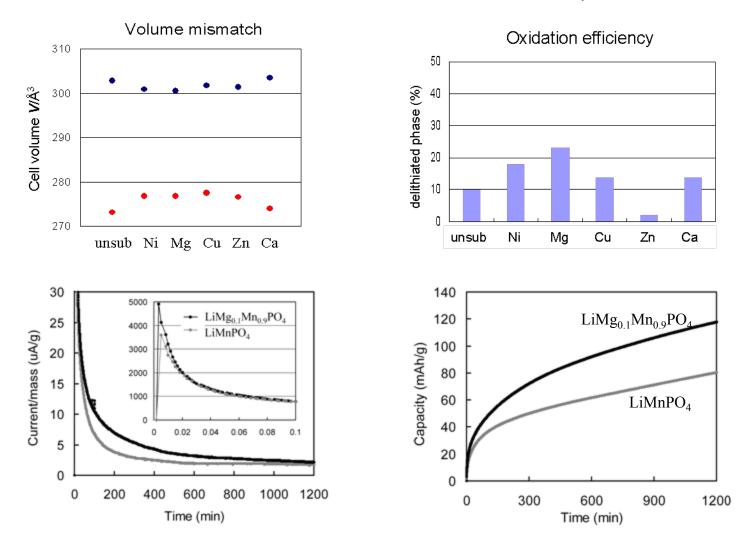
	LiFePO ₄	
Voltage	3.4 V	
Capacity	170 mAh/g	c b a
Density	3.6 g/cm ³	
Energy Density	2.08 Wh/cm ³	
Volume Change	6.6 %	
	High Rate (20 C)	


LiMnPO₄ 4.1 V 171 mAh/g 3.4 g/cm³ 2.38 Wh/cm³ 9.5 % Low Rate (C/10)

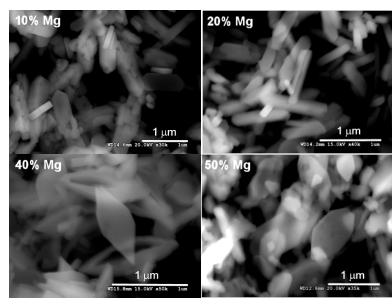
- What makes LiMnPO₄ perform poorly?
- Is the phase transition mechanism the same as in LiFePO₄?
- How do composition, microstructure and morphology affect performance?
- What can be done to improve its intrinsic properties?
- What can be done to improve electrode structure?
- Prepare samples with controlled morphologies.
- Investigate fundamental properties.

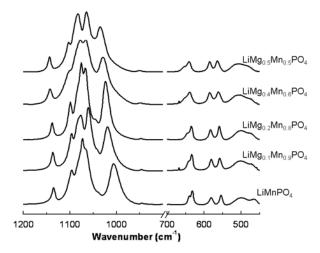

Instability of MPO₄ phases:

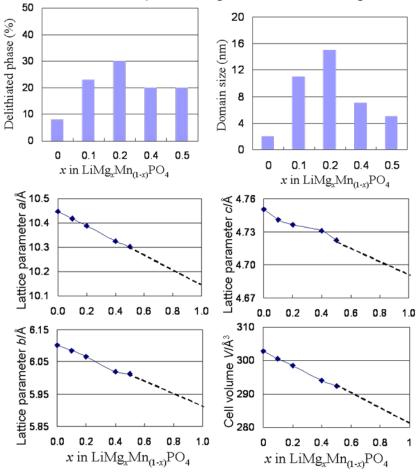
- LiFePO₄ and LiMnPO₄ melt without decomposition at 970 $^{\circ}$ C and 1020 $^{\circ}$ C, respectively.
- FePO₄ densifies at 580 °C to electrochemically inactive quartz-like FePO₄(Whittingham).
- $MnPO_4$ decomposes to $Mn_2P_2O_7$ + O2 beginning around 200 °C.



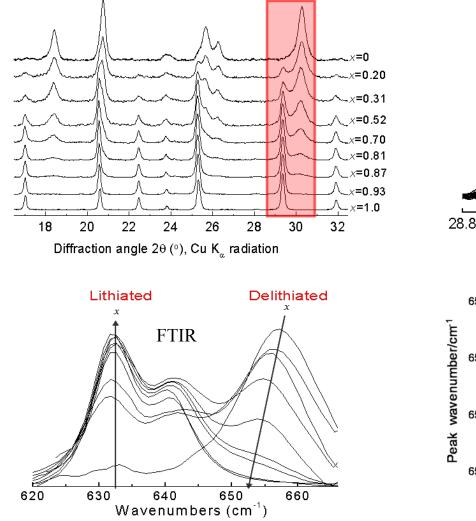
Internal strain in MnPO₄ results in decrepitation when Li is removed.

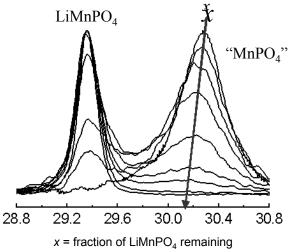


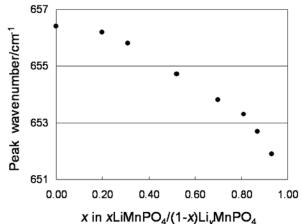

Substituted olivines LiMn(M')PO₄



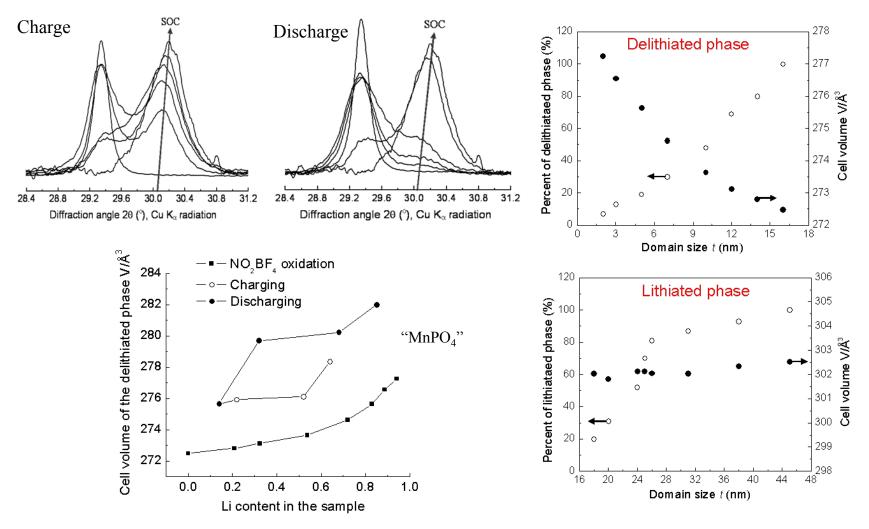
Hydrothermal LiMn(Mg)PO₄ Crystals

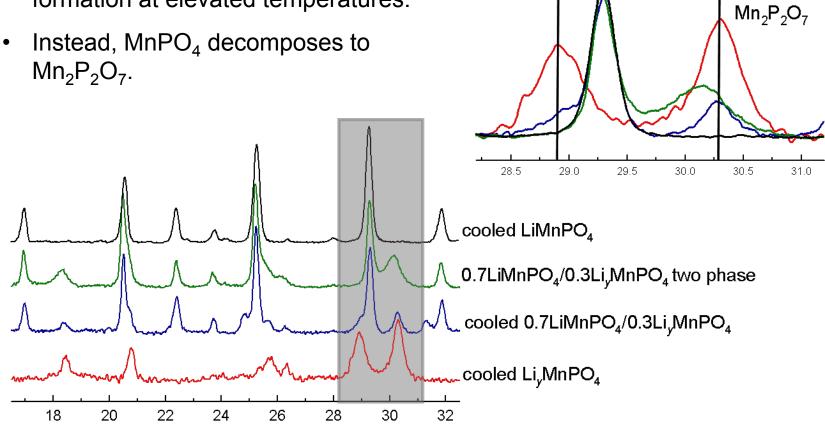

Delithiation efficiency and crystallinity of delithiated phase highest for 20 % Mg.




Lattice parameters agree with those reported by Whittingham.

Nonstoichiometric Phases in the LiMnPO₄ System

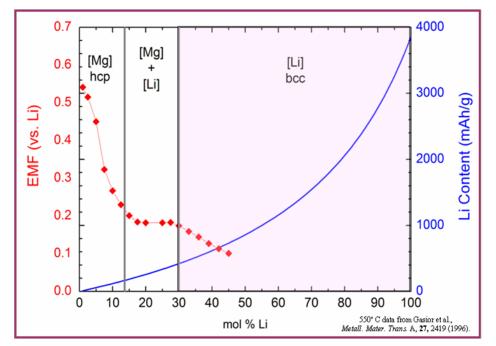



Nonstoichiometric Phases in the LiMnPO₄ System

Non-stoichiometry was not observed in the lithiated phase (LiMnPO₄).

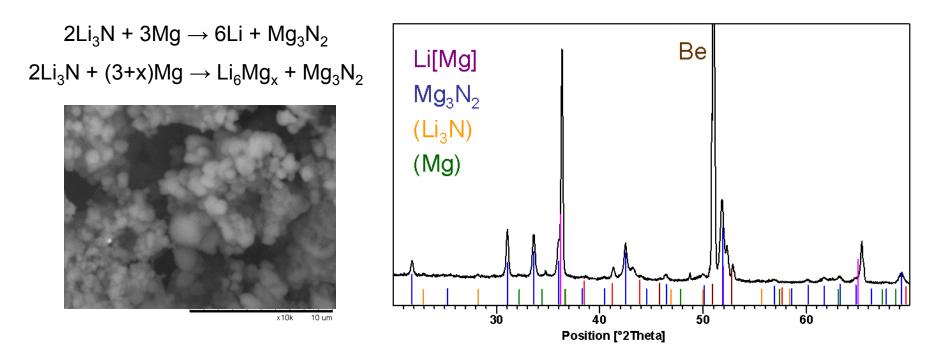
 No evidence for Li_xMnPO₄ solid solution formation at elevated temperatures.

APPROACH - ANODES


- Can lithium alloys or intermetallics safely replace carbon?
- What are their limitations (rate, loading, temperature)?
- Are there convenient synthetic routes?
- How can anode irreversible capacities be reduced?
- Prepare and study lithium alloys such as Li-Mg.
- Use metathesis reactions to prepare finely divided lithium, lithium alloys and intermetallics.

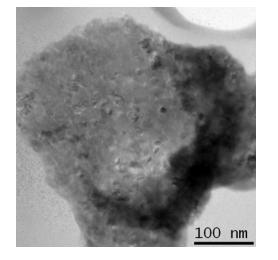
Li-Mg Alloys

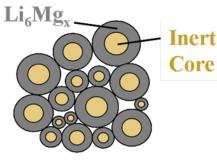
- Two solid solution ranges
- bcc [Li] from 30 100 % Li
- Very large capacities
- Dendrite formation inhibited
- Higher melting points than Li


Pure Li

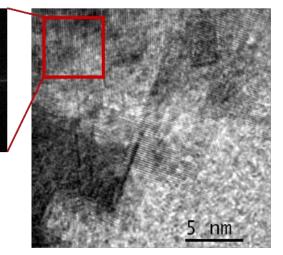
Challenges

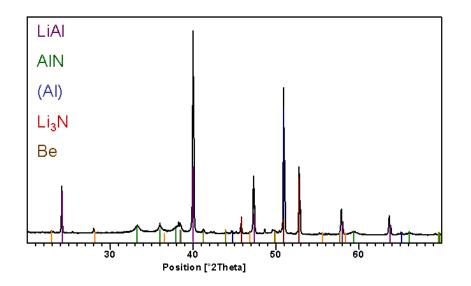
- Difficult to make in lab
- Potential too close to Li
- Conventional electrolytes not appropriate
- Low surface area


Alloy Synthesis by Metathetic Reactions

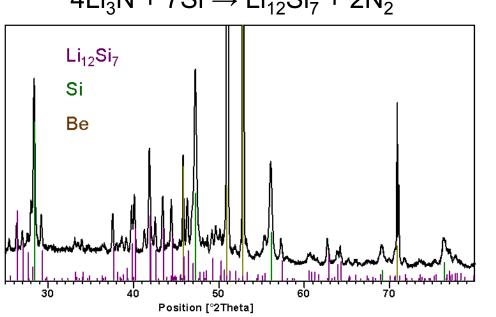


- Dry powders easily mixed, formed before or after reaction
- Large metal volume fraction, no carbon, no binder, ceramic component is inert
- Porosity controllable, high surface area possible.
- Inert ceramic component reduces magnitude and adverse effects of volume changes.



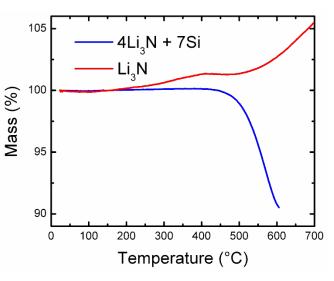

Alloy Synthesis by Metathetic Reactions

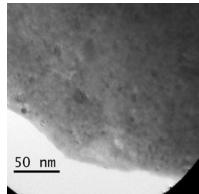
Li_{0.7}Mg_{0.3}:Mg₃N₂ cermet contains 51% Li[Mg] alloy by weight, 74% by volume Mg₃N₂ inclusions in alloy matrix



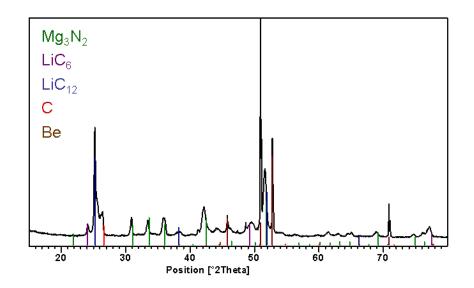
$\label{eq:Li3N} \begin{array}{l} \mathsf{Li}_3\mathsf{N} + \mathsf{AI} \to \mathsf{3Li} + \mathsf{AIN} \\ \mathsf{4Li}_3\mathsf{N} + \mathsf{4AI} \to \mathsf{3LiAI} + \mathsf{AIN} \end{array}$

Finely-divided Li-Al powders without grinding.




Li-Si Intermetallics from Li₃N

 $4\text{Li}_3\text{N} + 7\text{Si} \rightarrow \text{Li}_{12}\text{Si}_7 + 2\text{N}_2$


- Li₁₂Si₇ and other Li-Si compounds can be made without having to handle lithium or grind massive product ingots.
- Free flowing powders with high surface area. ٠
- No solid byproducts. ٠
- First cycle irreversible capacity reduced or eliminated. ٠
- Also works with Sn.

- Reactions of Li₃N with Mg or Al can make pure lithium in situ.
- This can be used to pre-lithiate other alloys or even carbonaceous anodes.
- No washing to remove organic reagents.
- Easier to handle than lithium powder.
- Inexpensive.
- 10 % of graphite capacity (typical irreversible 1st cycle loss) produces only 2 wt % residual AIN

 $2\text{Li}_{3}\text{N} + 3\text{Mg} + 36\text{C} \rightarrow 6\text{LiC}_{6} + \text{Mg}_{3}\text{N}_{2}$ $2\text{Li}_{3}\text{N} + (3+x)\text{Mg} \rightarrow \text{Li}_{6}\text{Mg}_{x} + \text{Mg}_{3}\text{N}_{2}$

$$(Li_3N + AI + 18C \rightarrow 3LiC_6 + AIN)$$

FUTURE WORK

- Complete fundamental studies of olivine cathodes.
- Synthesize and evaluate new cathode materials combining inherent safety with improved energy density. (New task in FY09 delayed by continuing resolution.)
- Continue to explore kinetic barriers to design and develop electrodes with high energy density, good rate performance and enhanced stability.
- Prepare and evaluate ternary solid solution alloys with higher potentials and greater stability toward electrolyte components.
- Explore pretreatment strategies to address irreversible capacity losses in carbon and non-carbon anodes.

SUMMARY

- The existence of non-stoichiometric phases in the LiMnPO₄ system is reported for the first time.
- A comprehensive study was carried out of particle decrepitation and the effects of divalent ion substitution on physical and electrochemical behavior of Mn olivines.
- The development and electrochemical significance of intermediate line phases in the Li_xFePO₄ system were studied. (Not reported here, publication in progress.)
- One-step syntheses of Li, Li-Mg, Li-Al, Li-Si and Li-Sn compounds from lithium nitride have been developed.
- The method may have applications in pretreatment of anodes to reduce irreversible capacity losses.