

... for a brighter future

Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

Paul Schaberg, Sasol Technology

Steve McConnell, Henry Ng, and Michael Wang, Argonne National Laboratory

A U.S. Department of Energy laboratory managed by The University of Chicago

Objective and Presentation Overview

Objective

Address a gap in tank-towheels criteria emissions and CO₂ data for coal-toliquids fuels for use in lifecycle analyses

Overview

- Test Programme
- Test Vehicle
- Test Fuels
- Results
- Conclusions and Recommendations

Test Programme

Vehicle

- 2009 VW Jetta Tdi (diesel)
- 50 State Compliant
- 4 000 miles preconditioning

Test Cycles (Triplicate Tests)

- Cold Start FTP
- HWY
- US06
- NEDC

Fuels

- US ULSD
- LTFT diesel
- HTFT diesel
- European EN590 diesel

Vehicle / Engine Specifications

Vehicle

Description: Four door compact sedan

Curb Mass: 1 480 kg

Engine

Cylinders: 4 in-line

Displacement: 1 968 cm³

Bore: 81.0 mm

Stroke: 95.5 mm

Compression Ratio: 16.5:1

Maximum Power: 103 kW @ 3750-4150 min⁻¹

Maximum Torque: 320 Nm @ 1750-2800 min⁻¹

Emission Control Technology

Fischer-Tropsch (FT) Technology

Test Fuels

Fuel Property	ULSD	EN590	HTFT	LTFT
Density @ 15 °C (kg/l)	0.854	0.832	0.810	0.773
Distillation (°C) 10% 50% 90%	208 262 320	185 255 325	210 235 340	213 271 347
Flash point (C)	67	62	60	63
Kin. Viscosity @ 40°C (mm²/s)	2.73	2.30	2.16	2.64
CFPP (°C)	-28	-25	-2	-5
Sulphur (mg/kg)	9	4	2	1
Cetane Number	48.8	53.6	58.4	>73
Carbon content (%m/m)	86.8	86.2	85.9	85.0
Hydrogen content (%m/m)	13.2	13.8	14.1	15.0
H/C ratio (mol/mol)	1.81	1.91	1.96	2.10
Aromatics (%m/m) Monocyclic Polycyclic Total	28.1 3.1 31.2	18.6 4.3 22.9	22.8 1.8 24.6	<0.1 <0.1 <0.1
Heating value (nett) (MJ/kg)	42.7	42.9	43.1	43.7
Heating value (nett) (MJ/l)	36.5	35.7	34.9	33.8

Results: CO and THC Emissions

- CO and THC well below Tier 2 Bin 5 limits (3.4 and 0.075 g/mi resp.)
- Differences between fuels mostly not statistically significant

Results: NOx and PM Emissions

- NOx well below Tier 2
 Bin 5 limit (0.05 g/mi)
- PM extremely low, below detection limit in some cases (e.g. HWY test).
- NOx and PM differences between fuels not statistically significant

Results: CO₂ Emissions

- Statistically significant differences with HTFT, LTFT, and EN590 fuels in FTP test.
- Statistically significant differences with LTFT fuel in US06 and HWY tests.
- Differences primarily due to difference in carbon content of fuels.

Results: Fuel Economy

- Fuel economy with FT fuels lower due to lower density
 - ~ 2% with HTFT diesel
 - ~ 5% with LTFT diesel
- Small increase in energy efficiency with FT and EN590 fuels in FTP cycle

Aftertreatment Regeneration

Expected regeneration modes:

- LNT NOx and SOx
- DPF

Characterized by:

- NH₃, N₂O, SO₂, NO and NO₂ emission
- Temperature increase

Test cycles during which regenerations occurred were discarded

Summary and Conclusions

- Significant differences in fuel properties did not appear to affect vehicle operation.
- Highly effective aftertreatment system (DOC + DPF + LNT)
 resulted in very low emissions. Low mileage on aftertreatment
 and non-inclusion of regeneration emission factor may result in
 unrealistic data.
- Differences in exhaust emissions between fuels were mostly not significant, except for CO₂ emissions which were lower with lower carbon fuels.
- FT fuels showed decreased fuel economy due to lower volumetric energy density, but tendency towards slightly higher energy efficiency.

Acknowledgements

- U.S. Department of Energy
 Kevin Stork
- Sasol Technology for providing fuels
- Argonne National Laboratory
 Geoffrey Amann, Michael Kern and Dave Bell
- Phoenix Chemical Laboratory
 Arthur Krawetz