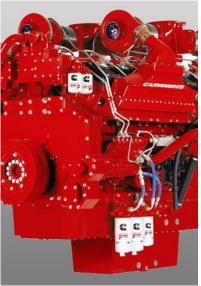
Passive Catalytic Approach to Low Temperature NOx Emission Abatement

Cary Henry, David Langenderfer, Aleksey Yezerets, Michael Ruth

Cummins Inc.

Hai-Ying Chen, Howard Hess, Mojghan Naseri


Johnson Matthey

ATLAS Program Goals

	Baseline	DoE	
	vehicle	Program	
	data⁺	Target	
FTP – 75	15.6	21.8	mpg
"city"	570	467	CO2 g/mi
HFET	24.5	34.3	mpg
"hi-way"	363	297	CO2 g/mi
CAFE	18.6	26.1	mpg
UAFE	476	390	CO2 g/mi

- 40% Fuel Economy improvement over current gasoline V8 powered half-ton pickup truck
- Initial demonstration of T2B5 TP emissions (6/2013), followed by T2B2 (6/2014)
- Catalyst development partnership with Johnson Matthey, Inc

ATLAS Program Requirements

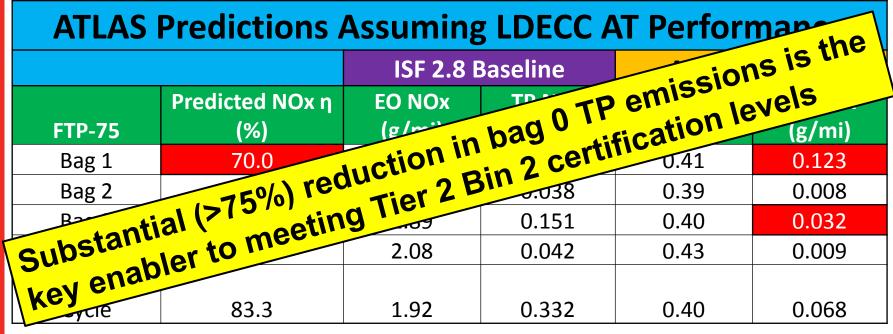
Bin#	Intermediate life (5 years / 50,000 mi)				Full useful life					
	NMOG*	СО	NOx	РМ	нсно	NMOG*	СО	NOx†	РМ	нсно
Permanen	Permanent Bins									
ISF 2.8						0.194	6.7	2.01	0.29	
8 ^b	0.100 0.125	3.4	0.14	-	0.015	0.125 0.156	4.2	0.20	0.02	0.018
5	0.075	3.4	0.05	-	0.015	0.090 53.6%	4.2 37.3%	0.07 92.3%	0.01 96.6%	0.018
2	-	-	-	-	-	0.010 94.8%	2.1 68.7%	0.02 99.0%	0.01 96.6%	0.004

* for diesel fueled vehicle, NMOG (non-methane organic gases) means NMHC (non-methane hydrocarbons)
+ average manufacturer fleet NOx standard is 0.07 g/mi for Tier 2 vehicles

b - The higher temporary NMOG, CO and HCHO values apply only to HLDTs and MDPVs and expire after 2008

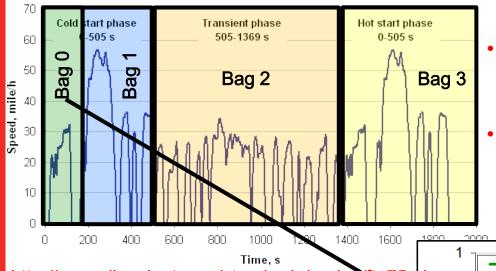
http://www.dieselnet.com/standards/us/ld_t2.php

- ISF 2.8 data from baseline Euro IV engine with no A/T during FTP-75 4 bag cycle
- PM mass emissions estimated based on test cell opacity measurements


Bag-Specific NOx and HC Emissions for LDECC

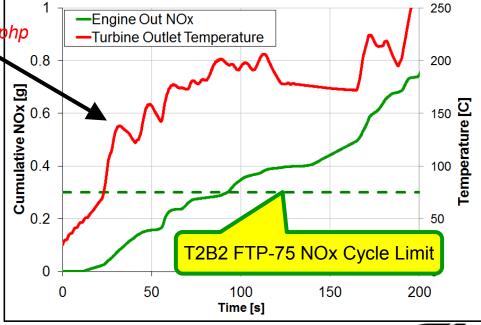
LDECC						
FTP-75	Eng Out NOx (g/mi)	TP NOx (g/mi)	NOx η (%)			
Bag 1	0.80	0.24	70.0			
Bag 2	0.43	0.01	97.7			
Bag 3	0.60	0.05	91.7			
Bag 4	0.47	0.01	97.9			
Weighted Cycle	0.56	0.07	90.0			

- LDECC was well within the certification limits for T2B2 applications during bags 2 and 4 of the FTP-75 drive cycle for NOx and NMHC emissions
- Bag 1 emissions for the FTP-75 cycle are an order of magnitude greater than T2B2 limits
- Meeting T2B2 emission levels during bags 2 and 4 required 97% NOx conversion, and allows zero margin for IRAF

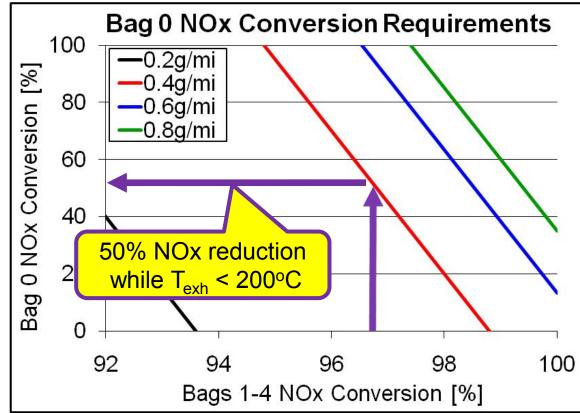


Bag-Specific NOx Emission Targets for ATLAS

- AT Performance predicted based on LDECC AT performance
- Current emissions of ISF 2.8 during FTP-75 are too high for current state of the art NOx A/T to meet T2B2 emission levels
- Reduction in engine out NOx emissions from 2 g/mi to 0.4 g/mi allows for T2B2 emissions levels during bags 2&4 with current state of the art NOx A/T
- Further improvements to the cold start behavior of A/T system is required to meet T2B2 emission levels during bags 1&3


ATLAS Engine Out Emissions Targets

- For LD certification, cold FTP-75 cycle has increased weighting of 43% (compared to 17% for HD)
- Base 2.8L engine takes approximately 170s to reach and maintain exhaust temperature of 200°C


- ATLAS is referring to this portion of the FTP-75 cycle as "Bag 0"
- Current state-of-the-art Cu Zeolite catalysts do not efficiently reduce NOx at these temperatures
- Mitigation of NOx and HC at these low temperatures requires technological advancements in A/T design and control

US DoE DEER Conference 2011

NOx Conversion Performance Requirement for ATLAS

- To meet the T2B2 TP target for EO NOx of 0.4g/mi, NOx conversion efficiency during Bags 1-4 must be >96%
- In order to meet T2B2 emission levels with the current state of the art Cu Zeolite SCR formulations (~97% NOx conversion), tailpipe NOx during bag 0 must be reduced by ~50%

Catalytic Approaches to Bag 0 Emissions

400

350

300

250

200

150

100

50

0

500

SCR

300

-Cumulative Engine Out Nox

Exhaust Gas Temperature

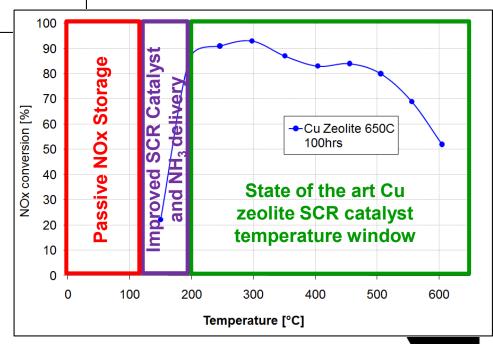
400

Temperature [C]

Outlet

Turbo (

Mitigation


- Current state of the art Cu Zeolite formulations have a substantial drop in NOx conversion performance below 200°C
- In order to mitigate NOx emissions at the low temperatures experienced during cold starts, new advances in technology are required

 Improving current SCR formulations and NH₃ delivery may improve performance down to 150°C

200

Time [s]

 To prevent NOx slip at lower temperatures, novel technologies such as Passive NOx Adsorbers (PNA) show great potential

10.0

8.0

6.0

4.0

2.0

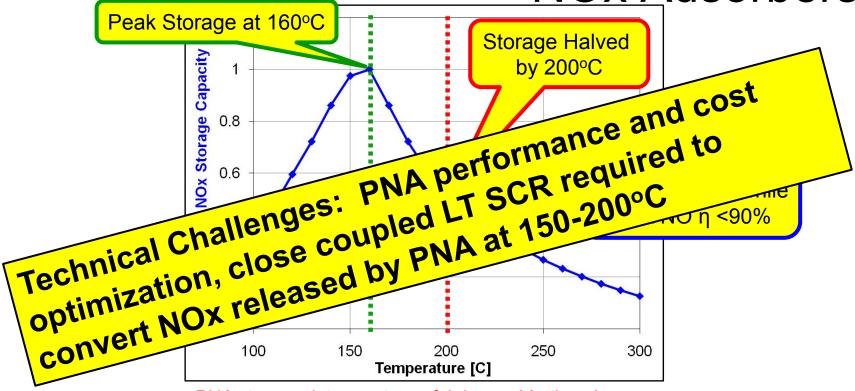
0.0

0

Passive NOx

Storage

and/or

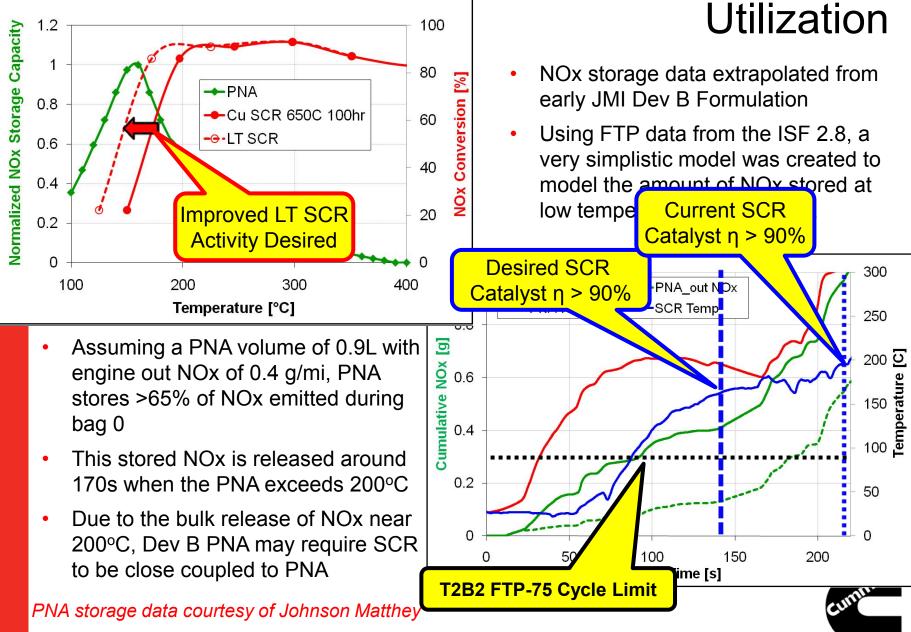

Improved

NH₃ Delivery

100

Cum. E.O. Emissions [NOX(g), HC (.1g)]

LT NOx Slip Reduction Using Passive NOx Adsorbers



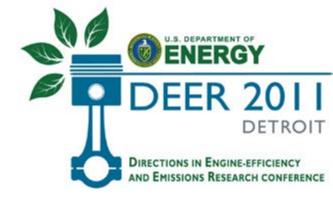
PNA storage data courtesy of Johnson Matthey, Inc

- PNAs store NOx at low temperature and release NOx as the catalyst temperature increases
- This stored NOx begins releasing from the PNA at 150°C
- Due to the bulk release of NOx at these temperatures, a LT SCR catalyst must be close coupled to the PNA

10/25/2011 US DoE DEER Conference 2011

LT SCR Development for Improved PNA

Summary


- Mitigation of NOx emissions during first 180s of FTP-75, is the key enabler for meeting T2B2 emissions levels
 - Developmental PNA may be suitable for temporarily storing NOx during bag 0
 - Due to NOx release profile of PNA, SCR may need to be closecoupled to the PNA, and optimized for LT performance

Technical Challenges

- PNA Performance Optimization
 - Increased NOx release temp (~175°C SOR), increased NOx storage efficiency >90% (27-150°C)
- LT CC-SCR Formulation
 - Improved LT NOx conversion efficiency (>90% @ 175°C) for converting NOx released from PNA during cold start

Thank You!

U.S. Department of Energy

 Ken Howden, Carl Maronde, Roland Gravel, and Gurpreet Singh

