

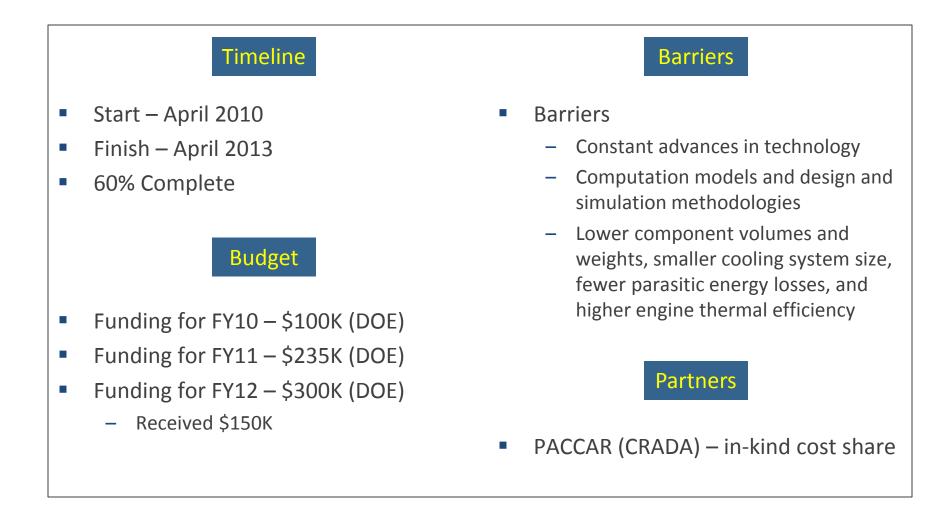
CRADA with PACCAR Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube

Wenhua Yu

Energy Systems Division, Argonne National Laboratory

May 16, 2012

Coworkers


David M. France, Dileep Singh, Jules L. Routbort, and Roger K. Smith

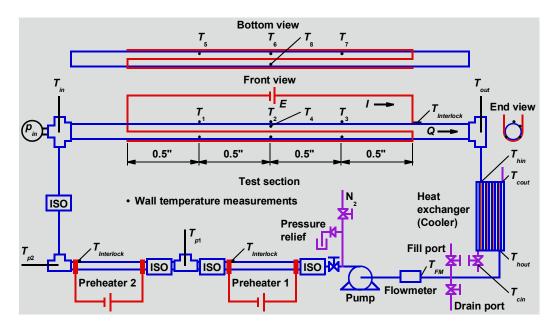
Project ID # VSS079

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Objectives/Relevance

- Overall objective
 - Understand and quantify engine coolant boiling heat transfer in heavy duty trucks for
 - Increase cooling system efficiency with reduced cooling system size
 - Increase engine thermal efficiency through optimized thermal control
- Specific programmatic objectives
 - Experimentally determine boiling heat transfer rates and limits in the head region of heavy duty truck engines
 - Develop predictive mathematical models for boiling heat transfer coefficients
 - Provide measurements and models for development/validation of heavy duty truck engine computer code
- Relevance to Vehicle Technologies Program
 - Reduce parasitic energy losses
 - Reduce size, weight, and pumping power of cooling systems
 - Increase engine thermal efficiency
 - Optimize engine cooling
 - Improve engine temperature gradients
 - Overcome barriers
 - Technology advances in coolant boiling
 - Computational model improvement for heavy duty truck engine analysis

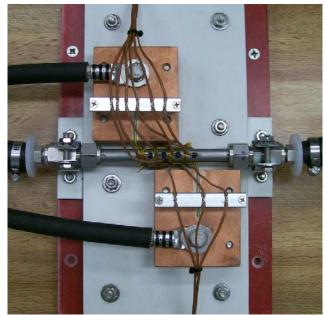


Milestones

- June 2010 Selection of experimental parameters, concept design of experimental facility, and power supply system rewiring (completed)
- September 2010 Detailed design of experimental facility (completed)
- December 2010 Procurement and fabrication of experimental facility components and hardware/software for DAS (completed)
- March 2011 Assembly of experimental facility (completed)
- June 2011 Checkout, preliminary operation, and heat loss calibration of experimental facility (completed)
- September 2011 Single-phase heat transfer tests and analyses (completed)
- March 2012 Initial subcooled boiling heat transfer tests (completed)
- Sept 2012 Tests and analyses of subcooled boiling in water, 50/50 mixture, and 25/75 mixture over a range of flowrates and subcoolings
- March 2013 Boiling heat transfer tests and analyses, comparisons with exiting prediction equations, and modifications as required

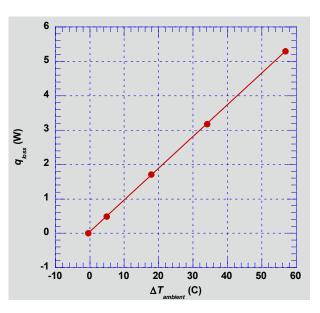
Experimental Approach

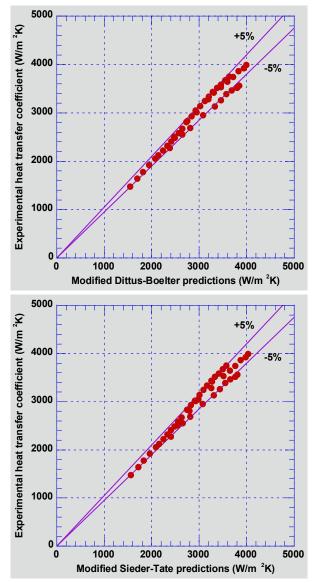
- New experimental facility based on Argonne National Laboratory unique experience with boiling of 40/60, 50/50, and 60/50 ethylene glycol/water mixtures
 - Simulation of cylinder head in a 500 hp diesel engine
 - Geometry, flow, and energy simulation (inside diameter=11 mm, length=51 mm, flow speed=1.5 m/s)
 - Boiling of pure water, 50/50 ethylene glycol/water mixture, and 25/75 ethylene glycol/water mixture
- New applications to very high heat flux boiling conditions in cylinder head


Accomplishments – Experimental Test Facility


- Key parameters for experimental test facility
 - Test section round cast iron tube with 11 mm inside diameter and 51 mm length
 - High fluid flowrate up to 1.5 m/s
 - Heating –half heated test section, high heat flux for preheating and test section heating
- Key solutions for test facility design and fabrication challenges
 - Preheaters
 - Dual preheating arrangement, Double-stacked U-shape preheaters
 - Appropriate preheater length and wall thickness for optimizing power output
 - Heat exchanger (cooler)
 - Compact plate and frame heat exchanger
 - Efficiently rejecting large amount of heat
 - Pump
 - Enough pump head and flowrate range
 - Operation temperature up to 110 C
 - Balance of system piping
 - Acceptable pressure drop
 - Data acquisition system
 - LabVIEW program
 - On-screen data display
 - On-screen graphic display temperature curves
 - On-screen control button display

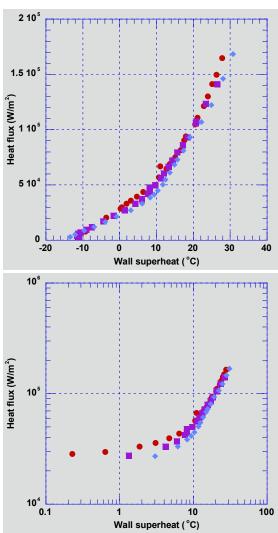
Accomplishments – Experimental Test Section


- Key design and fabrication challenges
 - Short test section length
 - Half-heated around the test section circumference
 - High heat flux
 - No current through the test section
- Test section heating solutions
 - Stainless steel wire for half heating the test section
 - Appropriate heating wire size (diameter and length)
 - For optimizing power output
 - Electrical insulation
 - No current flowing through the test section
- System instrumentation
 - Eight wall thermocouples installed
 - Along the test section
 - Around the test section circumference
 - Test fluid temperatures test section inlet and outlet fluid in-stream thermocouples
 - Other temperature measurements and interlocks
 - Test section inlet pressures absolute pressure transducer
 - Test fluid flowrates electromagnetic flowmeter

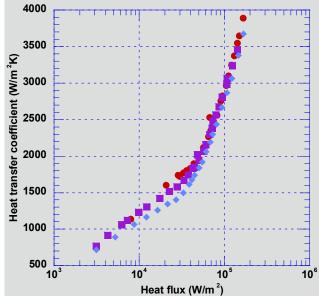

Accomplishments – Heat Loss Calibration

- Well-insulated experimental test section
 - Minimized heat loss to the environment
 - Heat loss is not negligible during flow boiling heat transfer experiments because of the relatively high driving temperatures
- No flow heat loss tests
 - Applied five power inputs to bring its wall temperature to selected levels
 - Corresponding heat loss=applied power
- Heat loss characteristics
 - Minimized heat loss
 - Expected to be less than 1% of the applied power
 - Linearly depended on driving temperature difference
 - Predicted well with the fitting equation
 - Incorporated into the data reduction procedures
 - For single-phase heat transfer tests
 - For boiling heat transfer tests

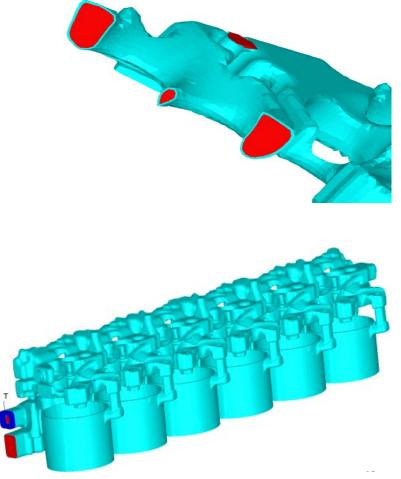
Accomplishments – Single-Phase Heat Transfer


- Single-phase heat transfer experimental parameters
 - Wall temperature: 35-85 C
 - Fluid temperature: 20–75 C
 - Reynolds number: 2400–42000
 - Prandtl number: 2.35–6.90
 - Flow velocity: 0.22-1.47 m/s
 - Covering boiling flowrate range
- Modified Dittus-Boelter equation
 - h=0.4020Re^{0.4465}Pr^{0.4}(k/d)
- Modified Sieder-Tate equation
 - h=0.4920Re^{0.4326}Pr^{1/3}(μ_{fluid}/μ_{wall})^{0.14}(k/d)
- Single-phase heat transfer coefficients
 - Very well predicted by the modified equations
 - Most experimental data within ±5% ranges

9


Accomplishments – Two-Phase Flow Boiling Curve

- Bulk fluid temperature
 - Lower than fluid saturation temperature
 - Subcooled boiling
- Wall temperature
 - Higher than fluid saturation temperature
- Wall superheat
 - Increases with the heating power input
 - Two slopes
 - Single-phase: small increase in heat flux → large increase in wall superheat
 - Two-phase boiling: similar increase in heat flux → lower increase in wall superheat
 - Up to approximate 30 C
- Boiling curve
 - Generated for water (to be extended over a range of flowrates and subcoolings and to ethylene-glycol/water mixtures – see Proposed Future Work)


Accomplishments – Two-Phase Heat Transfer

- Two-phase subcooled boiling experimental parameters
 - Wall temperature: 90–140 C
 - Fluid temperature: approximate 85 C
 - Subcooling: approximate 16 C
 - Reynolds number: 4000
 - Prandtl number: 2.10
 - Flow velocity: 0.125 m/s
- Heat transfer coefficients under current conditions
 - Two different trends versus heat flux
 - Single-phase convection dominant
 - Two-phase boiling dominant
 - Initial boiling at heat flux approximate 40000 W/m²
 - Boiling heat transfer coefficient up to 4000 W/m² K

Collaboration with Other Institutions

- Partner
 - PACCAR/DAF
 - CRADA in place for the joint program
 - With in-kind cost share
- Boiling experimental work
 - PACCAR/DAF: specifying test parameters
 - Argonne: performing experimental work
 - Argonne and PACCAR/DAF: exchanging technical and project progress information
- Computer code optimization and validation
 - PACCAR/DAF: performing code optimization and validation
 - Argonne and PACCAR/DAF: exchanging technical information
- Interpretation and evaluation of results
 - Combined effort of Argonne and PACCAR/DAF

Proposed Future Work

- Coolant boiling heat transfer tests
 - Test fluids: pure water, 50/50 ethylene glycol/water mixture, and 25/75 ethylene glycol/water mixture
 - Flow speed range up to 1.5 m/s
 - Test fluid subcooled temperature levels
- Experimental data analyses
 - Boiling data reduction procedure and Excel spreadsheet
 - Experimental data comparison, interpretation, and correlation
 - Comparison between the experimental data and the theoretical predictions
 - Interpretation of experimental data (heat transfer coefficients and possible critical heat fluxes)
 - Correlation of boiling heat transfer coefficients
- Computer code optimization and validation

Summary

- Completed concept and detailed designs of experimental facility with specified test section size, test section material, test fluid flowrates, heating method, and heat rates
 - Successfully resolved many technical challenges in design
- Designed and fabricated/purchased experimental facility components including test section, preheaters, heat exchanger (cooler), fluid pump and controller, power supply controller, and instrumentation
 - Successfully overcame many technical challenges in fabrication
- Completed heat loss calibration and single-phase heat transfer tests of experimental facility and initiated boiling tests
 - Successfully developed single-phase predictive equations
- Accomplished all intended objectives on schedule
 - Currently running boiling heat transfer tests
- Work planned for next year and beyond
 - Boiling heat transfer tests
 - Experimental data comparison, interpretation, and correlation
 - Computer code optimization and validation