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Overview 

 
 

 Start – April 2010 
 Finish – April 2013 
 60% Complete 

 
 
 

 Funding for FY10 – $100K (DOE) 
 Funding for FY11 – $235K (DOE) 
 Funding for FY12 – $300K (DOE) 

– Received $150K 

 

 
 

 Barriers 
– Constant advances in technology 
– Computation models and design and 

simulation methodologies 
– Lower component volumes and 

weights, smaller cooling system size, 
fewer parasitic energy losses, and 
higher engine thermal efficiency 

 
 
 

 PACCAR (CRADA) – in-kind cost share 
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Timeline Barriers 

Budget 

Partners 



Objectives/Relevance 
 Overall objective 

– Understand and quantify engine coolant boiling heat transfer in heavy duty trucks for 
• Increase cooling system efficiency with reduced cooling system size 
• Increase engine thermal efficiency through optimized thermal control 

 Specific programmatic objectives 
– Experimentally determine boiling heat transfer rates and limits in the head region of 

heavy duty truck engines 
– Develop predictive mathematical models for boiling heat transfer coefficients 
– Provide measurements and models for development/validation of heavy duty truck 

engine computer code 

 Relevance to Vehicle Technologies Program 
– Reduce parasitic energy losses 

• Reduce size, weight, and pumping power of cooling systems 

– Increase engine thermal efficiency 
• Optimize engine cooling 
• Improve engine temperature gradients 

– Overcome barriers 
• Technology advances in coolant boiling  
• Computational model improvement for heavy duty truck engine analysis 
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Milestones 

 June 2010 – Selection of experimental parameters, concept design of 
experimental facility, and power supply system rewiring (completed) 

 September 2010 – Detailed design of experimental facility (completed) 
 December 2010 – Procurement and fabrication of experimental facility 

components and  hardware/software for DAS (completed) 
 March 2011 – Assembly of experimental facility (completed) 
 June 2011 – Checkout, preliminary operation, and heat loss calibration of 

experimental facility (completed) 
 September 2011 – Single-phase heat transfer tests and analyses (completed) 
 March 2012 – Initial subcooled boiling heat transfer tests (completed) 
 Sept 2012 – Tests and analyses of subcooled boiling in water, 50/50 mixture, and 

25/75 mixture over a range of flowrates and subcoolings 
 March 2013 – Boiling heat transfer tests and analyses, comparisons with exiting 

prediction equations, and modifications as required 
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Experimental Approach 
 New experimental facility based on Argonne National Laboratory unique 

experience with boiling of 40/60, 50/50, and 60/50  ethylene glycol/water 
mixtures 

– Simulation of cylinder head in a 500 hp diesel engine 
– Geometry, flow, and energy simulation (inside diameter=11 mm, length=51 mm, flow 

speed=1.5 m/s) 
– Boiling of pure water, 50/50 ethylene glycol/water mixture, and 25/75 ethylene 

glycol/water mixture 

 New applications to very high heat flux boiling conditions in cylinder head 
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Accomplishments — Experimental Test Facility 
 Key parameters for experimental test facility 

– Test section – round cast iron tube with 11 mm inside diameter and 51 mm length 
– High fluid flowrate – up to 1.5 m/s 
– Heating –half heated test section, high heat flux for preheating and test section heating 

 Key solutions for test facility design and fabrication challenges 
– Preheaters 

• Dual preheating arrangement, Double-stacked U-shape preheaters 
• Appropriate preheater length and wall thickness for optimizing power output 

– Heat exchanger (cooler) 
• Compact plate and frame heat exchanger 
• Efficiently rejecting large amount of heat 

– Pump 
• Enough pump head and flowrate range 
• Operation temperature up to 110 C 

– Balance of system piping 
• Acceptable pressure drop 

– Data acquisition system 
• LabVIEW program 
• On-screen data display 
• On-screen graphic display – temperature curves 
• On-screen control button display 
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Accomplishments — Experimental Test Section 
 Key design and fabrication challenges 

– Short test section length 
– Half-heated around the test section circumference 
– High heat flux 
– No current through the test section 

 Test section heating solutions 
– Stainless steel wire for half heating the test section 
– Appropriate heating wire size (diameter and length) 

• For optimizing power output 

– Electrical insulation 
• No current flowing through the test section 

 System instrumentation 
– Eight wall thermocouples installed 

• Along the test section 
• Around the test section circumference 

– Test fluid temperatures – test section inlet and outlet fluid in-stream thermocouples 
– Other temperature measurements and interlocks 
– Test section inlet pressures – absolute pressure transducer 
– Test fluid flowrates – electromagnetic flowmeter 
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Accomplishments — Heat Loss Calibration 

 Well-insulated experimental test section 
– Minimized heat loss to the environment 

• Heat loss is not negligible during flow boiling heat transfer experiments because of the 
relatively high driving temperatures 

 
 No flow heat loss tests 

– Applied five power inputs to bring its wall temperature to selected levels 
• Corresponding heat loss=applied power 

 
 Heat loss characteristics 

– Minimized heat loss 
• Expected to be less than 1% of the applied power 

– Linearly depended on driving temperature difference 
• Predicted well with the fitting equation 

– Incorporated into the data reduction procedures 
• For single-phase heat transfer tests 
• For boiling heat transfer tests 
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Accomplishments — Single-Phase Heat Transfer 

 Single-phase heat transfer experimental parameters 
– Wall temperature: 35–85 C 
– Fluid temperature: 20–75 C 
– Reynolds number: 2400–42000 
– Prandtl number: 2.35–6.90 
– Flow velocity: 0.22–1.47 m/s  

• Covering boiling flowrate range 

 
 Modified Dittus-Boelter equation 

– h=0.4020Re0.4465Pr0.4(k/d) 

 
 Modified Sieder-Tate equation 

– h=0.4920Re0.4326Pr1/3(µfluid/µwall)0.14(k/d) 

 
 Single-phase heat transfer coefficients 

– Very well predicted by the modified equations 
– Most experimental data within ±5% ranges 
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Accomplishments — Two-Phase Flow Boiling Curve 

 Bulk fluid temperature 
– Lower than fluid saturation temperature 

• Subcooled boiling 

 Wall temperature 
– Higher than fluid saturation temperature 

 Wall superheat 
– Increases with the heating power input 
– Two slopes 

• Single-phase: small increase in heat flux → large increase in 
wall superheat 

• Two-phase boiling: similar increase in heat flux → lower 
increase in wall superheat 

– Up to approximate 30 C 

 Boiling curve 
– Generated for water (to be extended over a range of 

flowrates and subcoolings and to ethylene-glycol/water 
mixtures – see Proposed Future Work) 
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Accomplishments — Two-Phase Heat Transfer 

 Two-phase subcooled boiling experimental parameters 
– Wall temperature: 90–140 C 
– Fluid temperature: approximate 85 C 
– Subcooling: approximate 16 C 
– Reynolds number: 4000 
– Prandtl number: 2.10 
– Flow velocity: 0.125 m/s  

 
 Heat transfer coefficients under current conditions 

– Two different trends versus heat flux 
• Single-phase convection dominant 
• Two-phase boiling dominant 

– Initial boiling at heat flux approximate 40000 W/m 2 
– Boiling heat transfer coefficient up to 4000 W/m 2 K 
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Collaboration with Other Institutions 

 Partner 
– PACCAR/DAF 
– CRADA in place for the joint program 

• With in-kind cost share 

 Boiling experimental work 
– PACCAR/DAF: specifying test parameters 
– Argonne: performing experimental work 
– Argonne and PACCAR/DAF: exchanging 

technical and project progress information 

 Computer code optimization and validation 
– PACCAR/DAF: performing code 

optimization and validation 
– Argonne and PACCAR/DAF: exchanging 

technical information 

 Interpretation and evaluation of results 
– Combined effort  of Argonne and 

PACCAR/DAF 
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Proposed Future Work 

 Coolant boiling heat transfer tests 
– Test fluids: pure water, 50/50 ethylene glycol/water mixture, and 25/75 ethylene 

glycol/water mixture 
– Flow speed range up to 1.5 m/s 
– Test fluid subcooled temperature levels 

 
 Experimental data analyses 

– Boiling data reduction procedure and Excel spreadsheet 
– Experimental data comparison, interpretation, and correlation 

• Comparison between the experimental data and the theoretical predictions 
• Interpretation of experimental data (heat transfer coefficients and possible critical heat fluxes) 
• Correlation of boiling heat transfer coefficients  

 
 Computer code optimization and validation 
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Summary 

 Completed concept and detailed designs of experimental facility with specified 
test section size, test section material, test fluid flowrates, heating method, and 
heat rates 

– Successfully resolved many technical challenges in design 

 Designed and fabricated/purchased experimental facility components including 
test section, preheaters, heat exchanger (cooler), fluid pump and controller, 
power supply controller, and instrumentation 

– Successfully overcame many technical challenges in fabrication 

 Completed heat loss calibration and single-phase heat transfer tests of 
experimental facility and initiated boiling tests 

– Successfully developed single-phase predictive equations 

 Accomplished all intended objectives on schedule 
– Currently running boiling heat transfer tests 

 Work planned for next year and beyond 
– Boiling heat transfer tests 
– Experimental data comparison, interpretation, and correlation 
– Computer code optimization and validation 
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