Vehicles Technology Program Annual Merit Review – Propulsion Materials

Energy Efficiency & Renewable Energy

Jerry Gibbs Technology Development Manager Propulsion Materials Vehicle Technologies Program

Propulsion Materials Research Relevant to VT Goals

- Improve efficiency of advanced vehicles through innovative material solutions
- Critical enabler supporting Advanced Combustion, Thermoelectric, and Hybrid-Drive Systems
 - Material compatibility for Alternative Fuels
 - Materials for high efficiency AF/SI Engines
 - Materials for high efficiency CIDI engines
 - Materials for HCCI / HECC engines
 - Thermoelectric materials
 - Materials for reliable high performance hybrid and EV drive systems

Material Research Role

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Propulsion Materials Activities

Materials for Combustion Systems / High Efficiency Engines

Turbocharger, Valve train, Fuel Injection, Structural Components Head/Block, Sensors, Materials/Fuel Compatibility

Materials for Exhaust and

Energy Recovery

DPFs, Catalysts, Thermoelectric Materials, Materials for high temperature structures

Materials for Electric and Hybrid Drive Systems

High Temperature Power Electronics Materials, Solder Joints, Materials/Coolant Compatibility, And Materials for Electric Drive Motors

Materials By Design

Materials Synthesis, Characterization, Multi-Scale Computer models, Testing Standards, and Coatings

VTP Team Collaborations

Advanced Combustion Engine

LD 45%e @ \$30/kW HD 55%e Biofuels

Hybrid Electric Systems

55kW @ \$12/kW 300Whr @ \$20/Whr

Fuels Technologies

Petroleum Displacement

Lightweighting improves efficiency of all vehicles: Reduce the weight of the vehicle by 50% in a cost effective way

Propulsion materials support the goal of achieving combustion efficiency:

Passenger vehicles up to 45% and commercial vehicles 55% at today's cost :

- □ICE Requirements are demanding
 - High pressure fuel injection materials up to 45,000 psi for diesel engines
 - Peak cylinder pressure > 3,500 psi
- □Increased need for Energy Recovery
 - Accelerate use of Thermoelectric devices
 - Increased use of boosting technologies

Anticipate impacts of new fuel formulations

Planning is Critical

Energy Efficiency & Renewable Energy

Food for Thought

- Design Process is about 4 years,
- For inclusion, new materials must be qualified before designs begin
- New materials typically take 10+ years to develop

Materials Research Must be Focused on the Horizon

Vehicle Technologies Program

Fuel Injection Pressures

Direct Fuel Injection Pressure Trends

Heavy Duty Diesel Engine Trends

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Current Material Limits

ENERGY Energy Efficiency & Renewable Energy

Based on 1999 study

Resource Allocation

Propulsion Materials funding and cost share by technology

Project/Agreement Management

Prospective New Agreements in Each Technology Area are Evaluated On:

- Relevance to Vehicle Technologies Program Objectives
- Supported Team's Priorities
- Potential for Co-funding from other VTP Teams
- Industry Support for Activity
- Perceived risk/benefit to program
- Mechanism for Technology Transfer
- Existing activities are evaluated annually
 - Identify activities that should be transitioned to other VTP Teams or Industry
 - Identify activities requiring changes in effort
- Approximately 15% of activities are retired each year
- Goal to migrate over 50% of portfolio to competitively awarded Solicitations by 2014

Energy Efficiency & Renewable Energy

www.vehicles.energy.gov

Jerry Gibbs Propulsion Materials Technology Development Manager Vehicle Technologies Program Email: jerry.gibbs@ee.doe.gov