

Overview of the DOE High Efficiency Engine Technologies R&D

Roland Gravel
Advanced Combustion Engine R&D Subprogram
Vehicle Technologies Program

Presented at the 2011 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review Washington, DC May 9-13, 2011

Vehicle Technologies Program Mission
To develop more energy efficient and
environmentally friendly highway
transportation technologies that enable
America to use less petroleum.

The Federal Role

- Facilitate development of precompetitive technical knowledge base through investments in fundamental and applied R&D
- Undertake High-Risk Mid- to Long-Term Research
- Utilize Unique National Lab Expertise and Facilities
- Help Create a National Consensus
- Enable public-private partnerships to integrate R&D into industrially useful design tools

Advanced Combustion Engine R&D

Strategic Goal: Reduce petroleum dependence by removing critical technical barriers to mass commercialization of highefficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

Primary Directions

- Improve ICE efficiency for cars, light- and heavy-duty trucks through advanced combustion and minimization of thermal and parasitic losses
- Develop aftertreatment technologies integrated with combustion strategies for emissions compliance and minimization of efficiency penalty
- Explore waste energy recovery with mechanical and advanced thermoelectrics devices
- Coordinate with fuels R&D to enable clean, high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen

Research Approach

Advanced Combustion Engine R&D

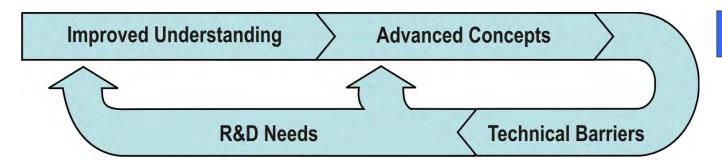
Industry

Fundamental Research

Applied Research

Technology Maturation & Deployment

Fundamental R&D


- SNL Low Temperature Combustion
- PNNL Catalyst Characterization (NOx and PM Control)
- ANL X-ray Visualization of fuel sprays
- LLNL Chemical kinetics models(LTC and emissions)
- LANL CFD modeling of combustion
- Universities Complementary research

Fundamental to Applied Bridging R&D

- ORNL Experiments and simulation of engines and emission control systems (bench-scale to fully integrated systems)
- ANL H₂-fueled ICE; fuel injector design

Competitively Awarded Costshared Industry R&D

- Auto and engine companies engine systems
- Suppliers enabling technologies (sensors, VVA, WHR)

Commercial

Product

Advanced Combustion Engine R&D

Key Activities

- □ Combustion and Emission Control R&D
 - Fundamental Combustion Research
 - Emission Control R&D
 - High Efficiency Engine Technologies
 - Heavy Truck Engine and Enabling Technologies
 - Advanced Technology Powertrains for Light-Duty Vehicles
 - Health Impacts
- □ Solid State Energy Conversion

Light-Duty Vehicle Goals

 By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and light-duty diesel vehicles by 40% compared to baseline 2009 gasoline vehicle

Technical Targets for Passenger Vehicle Engines

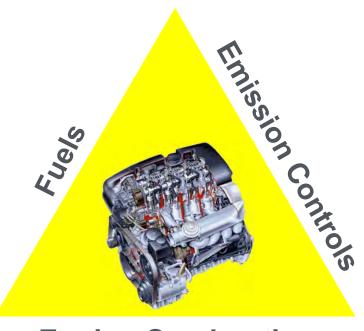
Characteristics	Fiscal Year						
	2007	2010	2015				
Reference peak brake thermal efficiency, %	32	34	NOTE: After				
Powertrain cost, \$/kW	35	30	2010, engine				
FreedomCAR and Fuel Partnership Goals	efficiency						
ICE Powertrain			targets				
Peak brake thermal efficiency, %	42	45	transitioned to vehicle fuel				
Part-load brake thermal efficiency, % (2 bar BMEP @1500 rpm)	29	31	economy improvement targets				
Cost, \$/kW	35	30					
VTP/C&EC Vehicle Level Goals							
Fuel economy improvement, % (gasoline/diesel)	25/40						
Emissions, g/mile	Tier 2, Bin 5	Tier 2, Bin 5	Tier 2, Bin 2				
Durability, hrs.	5,000	5,000	5,000				
Thermal efficiency penalty due to emission control devices %	<3	<1	<1				

DOE Heavy Truck Engine Goals Support the SuperTruck Effort

- By 2015, improve heavy truck fuel economy (engine thermal efficiency) by 20 percent with demonstration in commercial vehicle platforms
- By 2018, improve heavy truck fuel economy by 30 percent compared to 2009 baseline

Technical Targets for Heavy Truck Diesel Engines

Characteristics	Fiscal Year			
	2010	2015	2018	
Fuel Economy Improvement, %	-	20	30	
Engine thermal efficiency, %	42	50	55	
NO _X emissions, g/bhp-h	<0.20	<0.20	<0.20	
PM emissions, g/bhp-h	<0.01	<0.01	<0.01	
Stage of development	Commercial	Prototype	Proto‡ype	


Challenges

- □ Increase Fuel Economy
- □ Reducing Emissions
- Ensuring Durability
- □ Maintaining or Reducing Cost

Systems Approach to Dramatically Improve Diesel Engine Efficiency and Reduce Emissions

- Partnerships with auto/truck manufacturing industry, energy companies, suppliers and national laboratories
- Improve fundamental understanding
- Use integrated systems approach
- Progress being made in all 3 areas

Engine Combustion

Auto ← Light Truck ← Heavy Truck

R&D Coordinated with the FreedomCAR and Fuel Partnership

Materials Technologies

ChevronTexaco

R&D Coordinated with 21st **Century Truck Partnership**

Focus Research, Development and Demonstration in Five Key Technology Areas

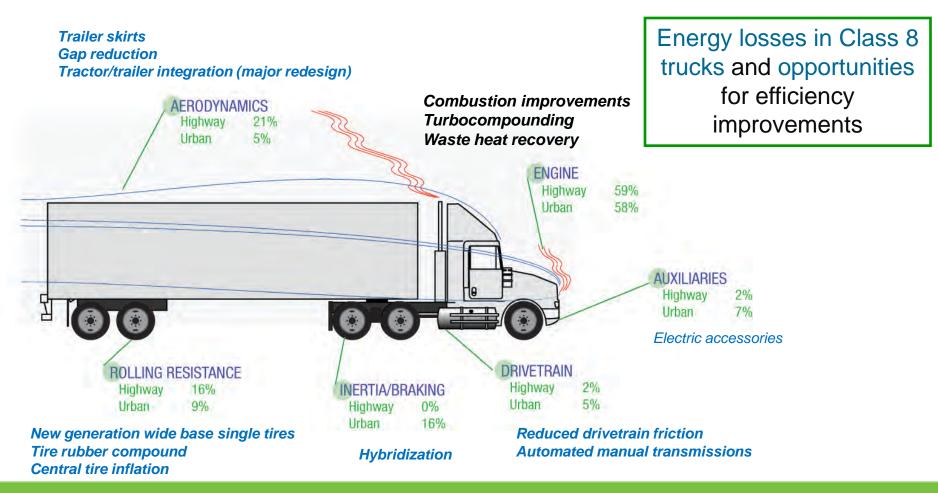
DOF/FFRF FreedomCAR and Vehicle Technologies

DOD/Armv TACOM NAC Military Vehicle R&D

DOT / RSPA Intelligent Vehicle and Highway Safety R&D

EPA Vehicle Emissions Regulations

Safety



SuperTruck Initiative

Demonstrate a 50% improvement in freight efficiency by 2015

Heavy-duty trucks use 20% of the fuel consumed in the United States. Fuel economy improvements in these trucks directly and quickly reduces petroleum consumption

SuperTruck and Advanced Technology Powertrain Projects

Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck)

Awardees		
Cummins, Inc.		
Daimler Trucks North America		
Navistar, Inc.		
Volvo		

Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD)

Awardees		
Chrysler Group		
Cummins Inc.		
Delphi Automotive Systems, LLC		
Ford Motor Company		
General Motors Corporation		
Robert Bosch		

Advanced Combustion Engine R&D Budget by Activities

Major Activities	FY 2009 FY 2010 Appropriation		FY 2011 Request	FY 2012 Request
Advanced Combustion Engine R&D	\$40,800K	\$57,600K	\$57,600K	49,000K
Combustion and Emission Control *	35,089	47,239	47,239	40,824
Solid State Energy Conversion**	4,568	8,748	8,748	6,804
SBIR/STTR	1,143	1,613	1,613	1,372

^{*}Includes Heavy Truck Engine and Health Impacts.

^{**}Formerly Waste Heat Recovery