U.S. Department of Energy Energy Efficiency and Renewable Energy

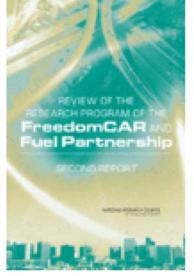
Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Vehicle Technologies Program

Overview of the DOE Advanced Combustion Engine R&D

Gurpreet Singh, Team Leader Advanced Combustion Engine R&D Subprogram Vehicle Technologies Program

> Presented at the 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review Arlington, VA May 2009


Vehicle Technologies Program Mission

To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002--

- Undertake High-Risk Mid- to Long-Term Research
- Utilize Unique National Lab Expertise and Facilities
- Help Create a National Consensus
- □ Work Cooperatively with Industry

The National Research Council fully supports advanced combustion engines research:

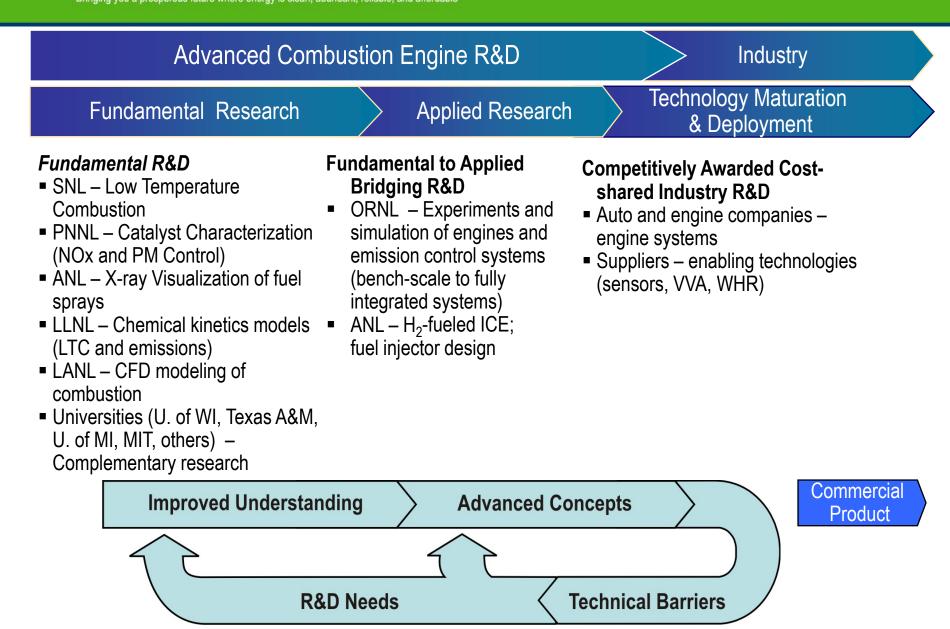
"Internal combustion engines (ICEs) will be the mainstay of the nation's automotive fleet for a very long time, even if the goals of the fuel cell program and the hydrogen infrastructure program are met, enabling fuel cell vehicles to be introduced in large numbers by 2020."

"This kind of *research has provided understanding* that allows ICE engines *to meet emission constraints and efficiency goals simultaneously.* ...would have an immediate, significant effect on petroleum use. ... new findings are quickly translated into large-scale development activities and, if these are successful, *will be rapidly deployed by industry*. ..."

Source: *Review of the Research Program of the FreedomCAR and Fuel Partnership: Second Report,* Committee on Review of the FreedomCAR and Fuel Research Program, Phase 2, National Research Council, 2008.

Strategic Goal: Reduce petroleum dependence by removing critical technical barriers to mass commercialization of high-efficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

Primary Directions

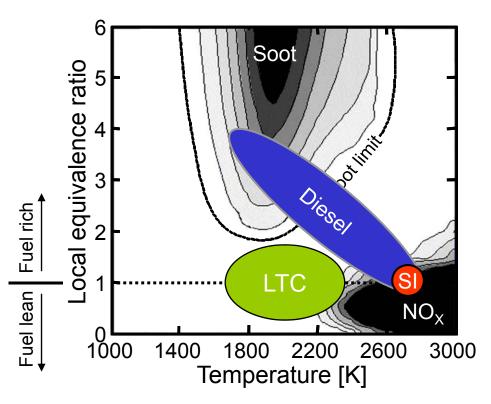

- ICE efficiency improvements for cars, light- and heavy-duty trucks through low-temperature combustion and minimization of thermal and parasitic losses
- Aftertreatment development integrated with combustion strategies for emissions compliance and minimization of efficiency penalty
- Waste energy recovery with thermoelectrics
- Coordination with fuels R&D to enable clean, high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen

Performance Targets

	2010 (light-duty)	2017 (heavy-duty)
Engine brake thermal efficiency	45%	55%
Powertrain cost	< \$30/kW	
NOx & PM emissions	Tier 2, Bin5	EPA Standards

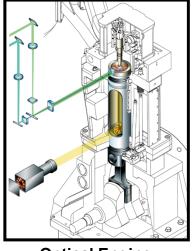
Research Approach

- Strategic Goal: To provide the science base on combustion and emission processes needed to develop more efficient, cleaner engines for transportation.
 - > Supports FreedomCAR mid-term program goals
 - light-duty peak efficiency of 45%, emission compliant, by 2010
 - Supports 21st Century Truck Program goal
 - heavy-duty peak efficiency of 50%, emission compliant, by 2010
- □ Key customers: the U.S. vehicle and engine industry.
- Strong interactions and collaborations between industry, suppliers, universities, and national labs.

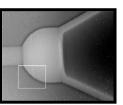

- **Goal:** To develop the knowledge base for low-temperature combustion (LTC) strategies and carry research results to products.
 - Combustion work coordinated under a Memorandum of Understanding (MOU)
 - > Five energy companies joined MOU in 2006
 - Added perspectives for production of potential fuels or fuel blends

Focus On Low-Temperature Combustion (LTC) Strategies

Potential to enable high-efficiency and low-emission operation

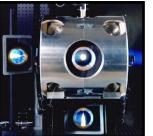


- LTC used generically to represent many processes
 - Homogeneous-Charge Compression-Ignition (HCCI)
 - Premixed-Charge Compression-Ignition (PCCI),
 SCCI, HECC, MK, UNIBUS, ...
- □ Challenges
 - Combustion phasing
 - Load range
 - Heat release rate
 - Transient control
 - > HC and CO emissions
 - Fuel characteristics



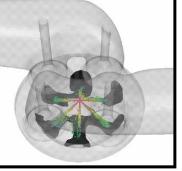
Research Approach

- Close collaboration between industry, national labs and universities
 - Research guided by industry needs
 - DOE/industry prototype engine projects
- Close coupled modeling and experiments
 - Multi-/single-cylinder engines & simulators
 - > Advanced diagnostics
 - Optical-, laser-, and x-ray- based techniques
 - Multi-dimensional computational models
- Cross-cuts light- and heavy-duty research


Nozzle Sac X-Ray Image

LES Grid

Automotive HCCI


LTC Simulator

H2 Engine

Multi-Cylinder Diesel

Engine Simulation

Major Activities	FY 2007 Appropriation	FY 2008 Appropriation	FY 2009 Appropriation
Advanced Combustion Engine R&D	\$48,346K	\$44,591K	\$40,800K
Combustion and Emission Control *	26,778	38,815	35,089
Heavy Truck Engine**	14,495	0	0
Solid State Energy Conversion***	4,579	4,527	4,568
Health Impacts**	2,494	0	0
SBIR/STTR		1,248	1,143

Changes in FY 2008 Request

*Expanded to include Heavy Truck Engine and Health Impacts. **Incorporated within expanded Combustion and Emission Control R&D. ***Formerly Waste Heat Recovery