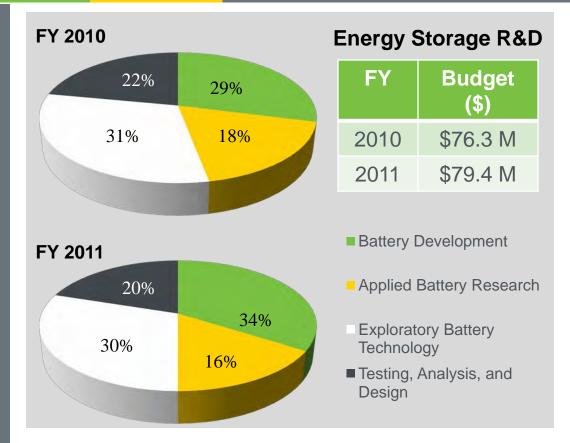
VEHICLE TECHNOLOGIES PROGRAM

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

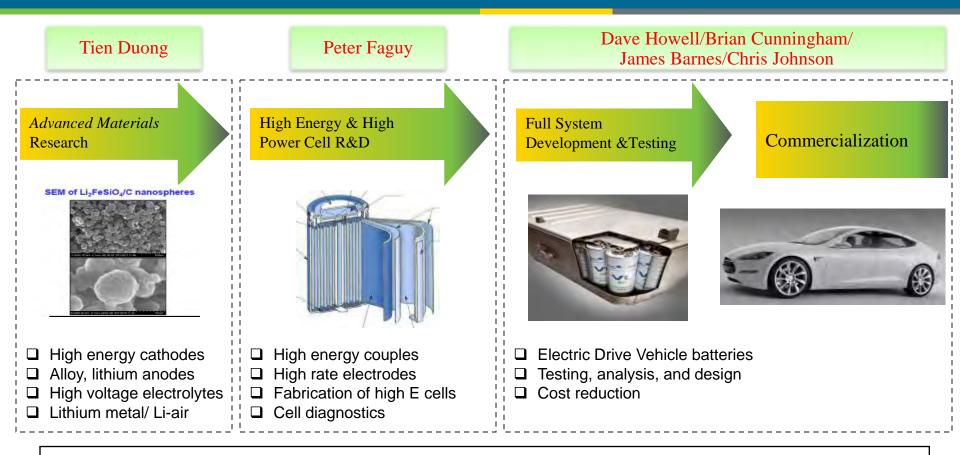

2011 Annual Merit Review and Peer Evaluation Meeting Energy Storage R&D May 9-13, 2011 David Howell, Team Lead Hybrid and Electric Systems US Department of Energy Project ID: ES000

Energy Storage R&D

ENERGY Energy Efficiency & Renewable Energy

CHARTER: Advance the development of batteries/ electrochemical energy storage devices to enable a large market penetration of hybrid and electric vehicles.

Program targets focus on enabling market success (increase performance at lower cost while meeting weight, volume, and safety targets.)

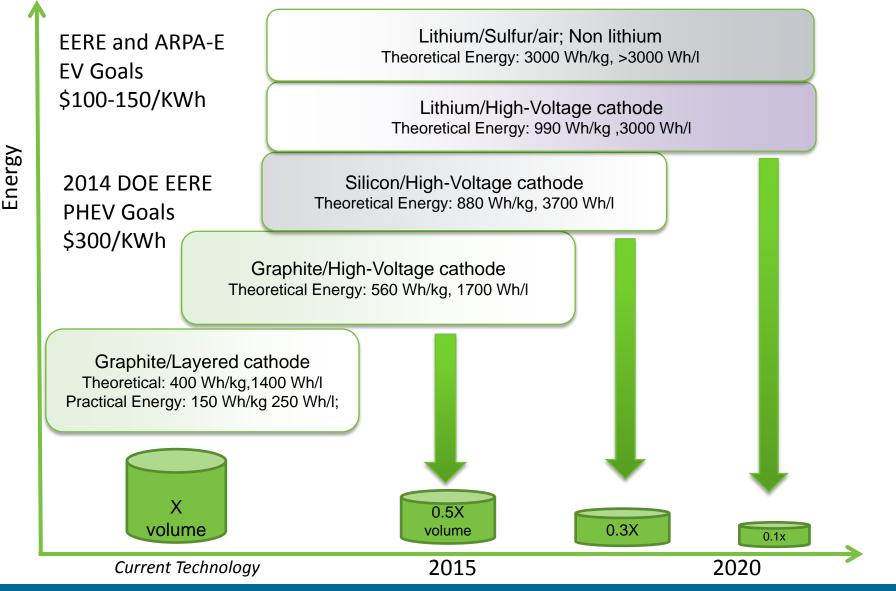

2014 GOALS: Reduce production cost of a PHEV battery to \$270/kWh (70%)

□ Intermediate: By 2012, reduce the production cost of a PHEV battery to \$500/kWh.

Battery R&D Activities

Energy Efficiency & Renewable Energy

115+ Lab, University, and Industry Projects


Projects are competitively selected using independent experts

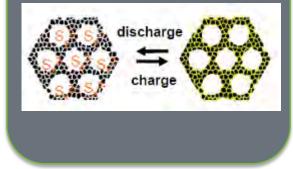
- Progress is tracked on a quarterly basis
 - All projects are reviewed annually by a merit review committee

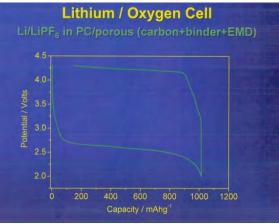
Research Roadmap for 2015 and Beyond

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technologies Beyond Lithium-Ion


U.S. DEPARTMENT OF ENERGY


Energy Efficiency & Renewable Energy

Goal	Cost Target: \$150/kWh			
Participants	ANL, LBNL, ORNL, Sion Power, Planar Technologies, BNL			
Issues	 Li metal dendrites lead to cell shorting Soluble polysulfides lead to self-discharge and poor cycling Low efficiency (<70%) – need bifunctional catalysts Poor power 			
Activities	 Develop materials that inhibit dendrite growth Enable efficient sulfur utilization (dissolve or confine polysulfides) Develop bifunctional catalysts for oxygen electrode 			

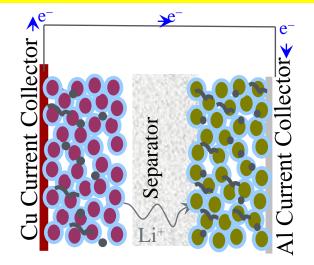
Chemistry	Energy (system, Wh/kg)	Power (system, W/kg)	Life (cycles)	Energy Efficiency	Safety
Li metal polymer	150-200	500	~1,000	85%	Concern
Li metal/Sulfur	250-400	750	~100	85%	Concern
Li metal/Air	400-800	Poor	~10-100	<70%	Concern

ORNL Mesoporous Carbon

Source: Peter G. Bruce, University of St. Andrews, Scotland

AMR Session Poster presentations (5/9–5/10)

Next Generation Lithium-Ion

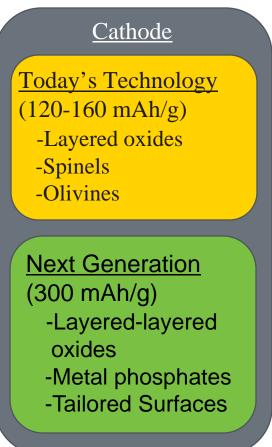

Energy Efficiency & Renewable Energy

Next generation lithium-ion can increase the power and energy by 2X while decreasing cost by 70%

Anode

<u>Today's Technology</u> (300 mAh/g) -Graphite -Hard carbon

Next Generation (600 mAh/g) -Intermetallics and new binders -Nanophase metal oxides -Conductive additives -Tailored SEI


<u>Electrolyte</u>

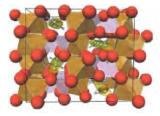
Today's Tech (4 volt)

Liquid organic solvents & gels

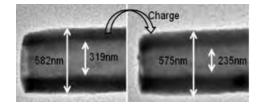
Next Generation (5 volt)

- -High voltage electrolytes
- -Electrolytes for Li metal
- -Non-flammable
- electrolytes

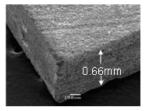
Next Generation Lithium-Ion Materials



Energy Efficiency & Renewable Energy


Perform cutting-edge research on new materials, and address fundamental chemical and mechanical instabilities

Goal	Cell component goals	First
	 Non-carbonaceous anodes (capacity > 500 mAh/g) High-capacity cathodes (capacity > 300 mAh/g). High-voltage cathodes (capacity >120 mAh/g) High-voltage electrolytes (stable up to 5V) Solid-polymer electrolytes with ionic conductivity 10⁻³ S/cm at room temperature 	Size &
Participants	 National Labs: ANL, PNNL, NREL, LBNL Universities University of Pittsburgh State University of New York–Binghamton Boston University University of Texas, Austin Arizona State University University of California North Carolina State University 	Enh
	 University of Rhode Island Case Western Reserve University University of Utah 	


First Principles Material Discovery (Ceder) – Rational design of materials using computational tools

Size & Morphology Control Improves Performance (Cui) – Hollow Si nanotubes show greatly enhanced cycling

Enhanced Processing (Chiang) – 10x thicker electrodes can increase cell energy density by 20%

Vehicle Technologies Pr<u>ogram</u>

Oral presentations (5/9–5/10)

AMR Session

Applied Battery Research

By 2014, a PHEV battery that can deliver a 40-mile all-electric range and costs \$3,400

Goal	Develop advanced cell chemistries using next-generation materials	Battery Size/Cost		
	 200 Wh/kg, 400 Wh/L cell goal 5,000 cycles, 10+ year life \$300/kWh at the pack level 	Current Technology		
Participants	 National labs: ANL, BNL, INL, LBNL, ORNL, SNL, ARL, JPL Industry Partners 	Graphite / LiMn ₂ O ₄ + LiNiMnCo Oxide ~300 Cells, ~\$10,000/Battery		
Issues	 Cycleability Rate (power) High-voltage stability Electrode and cell fabrication 	Gen 2 Technology		
Activities	 Advanced Cell Chemistries Calendar and cycle life studies Abuse tolerance studies 	Graphite / xLi ₂ MnO ₃ + (1-x)LiMO ₂ ~200 Cells, ~\$6,000/Battery		

Gen 3 Technology

Nano-Silicon / xLi₂MnO₃ + (1-x)LiMO₂ ~100 Cells, ~\$3,000/Battery

Battery Testing, Analysis, & Design

Energy Efficiency & Renewable Energy

By 2014, a PHEV battery that can deliver a 40-mile all-electric range and costs \$3,400

Participants

Activities

- Develop and maintain battery testing procedures and methodologies
- Provide high-fidelity battery performance testing and analysis
- Develop methodologies that estimate battery stateof-health and remaining life
- Abuse testing for USABC prototype cells and modules
- Develop mechanism to mitigate failures
- Perform and evaluate the characteristics of thermal management systems for USABC deliverables
- Design Computer Aided and Design (CAD) tools to reduce waste and improve manufacturing efficiency

Progress/ Highlights Idaho National Laboratory collaborated with the University of Montana and Qualtech Systems, Inc. to develop an inexpensive and rapid technique of measuring battery impedance.

Test setup for the blunt rod test on an 18650 cell

Hardware for in situ Impedance Measurement

AMR Session Poster presentations (5/10)

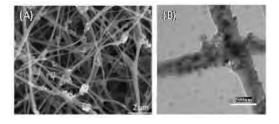
Advanced Materials and Processing

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Participants

3M, Angstrom Materials, North Carolina State University and ALE, Inc., FMC, Sion Power, TIAX, EnerDel, BASF, A123Systems


Activities FY2

FY2009 FOA

- □ Nine (9) Materials and Processing Awards
- Focus on advanced materials development, safety, and manufacturing process improvement (DOE cost-share: \$17.8 M)

FY2011 FOA (Targets)

- Improved power and energy densities
- Improved affordability of cost
- Improved battery designs safer, more reliable, and longer-lasting

Typical SEM and TEM Images – Si/C Nanofibers

AMR Session Poster presentations (5/10)

Advanced Battery Development (USABC Activity)

U.S. DEPARTMENT OF ER

Energy Efficiency & Renewable Energy

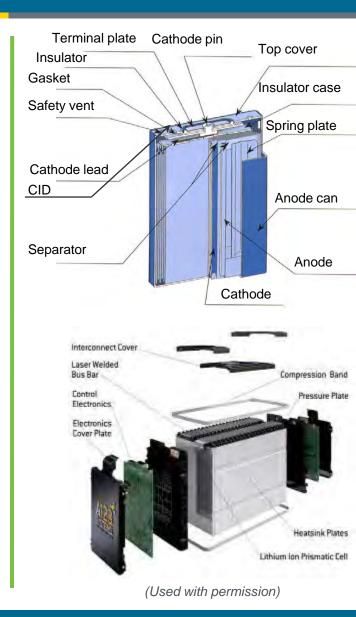
Battery Cell /Pack Development

Devices

Targets

Procedures

Battery Control & Safety


Detailed Cost Modeling

Standardized Test

Standardized Performance

- Material Specifications and Synthesis
- Electrode Formulation and Coating
- Electrode & Cell Design/Fabrication
- Module & Pack Design/Fabrication

Target	Company	Technology	
PHEV	A123Systems	Nano Iron Phosphates	
	JCI-SAFT	Nickel, Manganese, Cobalt	
	3M	Li Ni-Co-Mn Oxides	
EV	Envia Systems	High Energy Cathode	
	Cobasys	High Capacity NMC/LMO Cell	
	EnerDel	NMC/Graphite – Very High Capacity Cell	
	Quallion	High Energy and High Power Cells	
	Leyden Energy	Li-Imide Salt & Graphite Current Collector	
HEV	Maxwell	Asymmetric Ultracapacitor	
	A123Systems	Nano Iron Phosphates	
Materials	Entek	Low Cost, High Melt Integrity Separators	
	Celgard	Low Cost, High Melt Integrity Separators	

Energy Efficiency & Renewable Energy

DOE-funded technologies move to commercial applications

Several technologies, supported by VTP, have moved into commercial applications.

□ 1990s Nickel Metal Hydride

• **Cobasys** NiMH technology: Every HEV sold uses intellectual property developed in the DOE battery program. The US Treasury received royalty fees.

□ 1998 High-Power Lithium-ion (HEVs)

 Johnson Controls Saft (JCS) nickelate technology: BMW, Mercedes and Azure Dynamics/Ford Transit Connect

□ 2004 High-Energy Lithium-ion (EVs)

- **A123Systems** nano iorn phosphate technology: Fisker, BAE, Hymotion, Prius, Navistar
- CPI/LG Chem manganese technology: GM Volt extended range PHEV, Ford Focus EV

American Recovery and Reinvestment Act

Energy Efficiency & Renewable Energy

Goal (\$1.5B ARRA)	Accelerate the development of U.S. manufacturing capacity for batteries and electric drive components and the deployment of electric drive vehicles. A123 Systems, JCI, SAFT, CPI-LG, General Motors, Dow- Kokam, Exide, East Penn, BASF, Toda, Celgard, ENTEK, EnerG2, Pyrotek, Future Fuel, Novolyte, Honeywell, Chemetall Foote, H&T Waterbury, TOXCO			CROUNDBREAKING CROUNDBREAKING Com the test of test
Participants (20 Companies)				
Activities (20 facilities)	 Material Supply Lithium Supply Cell Components Cathode Production Anode Production Electrolyte Production Separator Production Other Components 	 Cell Fabrication Iron Phosphate Nickel Cobalt Metal Manganese Spinel Pack Assembly Iron Phosphate Nickel Cobalt Metal Manganese Spinel Advanced Lead Acid Batteries 	Recycling	Saft America lithium-ion battery plant groundbreaking in Jacksonville, FL
Progress/ Highlights	Brownstown, MICell and pack asserBattery pack asser	-	ivonia, MI aft in Holland, MI	Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

Poster presentations (5/10–5/11) Vehicle Technologies Program

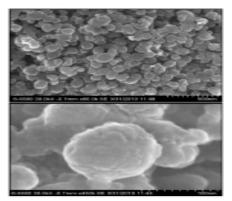

AMR Session

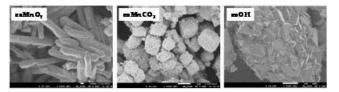
13

Outlook for Battery Cost and EV Production Capacity

ENERGY Energy Renew

Energy Efficiency & Renewable Energy


Summary


□ Track record of success

- DOE R&D has brought NiMH and Li-ion batteries into the automotive market
- □ Clear pathway to meet 2015 goals
 - On track to meet cost and performance targets
- Technologies in the pipeline to go beyond 2015
 - Research program focused on Li metal systems
 - Closely coordinated with ARPA-E and the Office of Science

SEM of Li₂FeSiO₄/C nanospheres

SEM pictures of $LiNi_{0.5}Mn_{1.5}O_4$ made from MnO_2 , $MnCO_3$ and hydroxide precursors