

# Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

Tien Q. Duong BATT Program Manager Energy Storage R&D Hybrid and Electric Systems Team Department of Energy

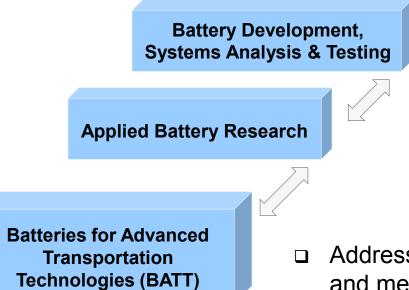
Tuesday, May 15, 2012

Project ID: ES108

Perform cutting-edge research on new materials, and address fundamental chemical and mechanical instabilities.

#### Timeline

- □ Start: October 2008
- □ Finish: September 2014
- 33% Complete


## Budget

- FY 2011: \$24.5M (BATT: \$20.9M)
- FY 2012: \$24.7M (BATT: \$21.1M)

#### Challenges

- Research and develop nextgeneration anodes and cathodes
- Understand failure mechanisms to enable higher energy, longer lasting, less expensive batteries
- Comprehensive modeling of cell and material behavior

### **Energy Storage R&D: Vehicle Technologies Program (VTP)**



Develop full prototype battery systems with industry (USABC, other industry).

Energy Efficiency &

Renewable Energy

Assist developers of lithium-ion technologies (PHEV applications) overcome key barriers to largescale usage.

U.S. DEPARTMENT OF

**ENERGY** 

Address the fundamental science of chemical and mechanical instabilities in current battery technologies, and develop new materials for next generation batteries.

#### Research efforts closely coordinated with the Office of Basic Energy Sciences, ARPA-E, and the Office of Electricity

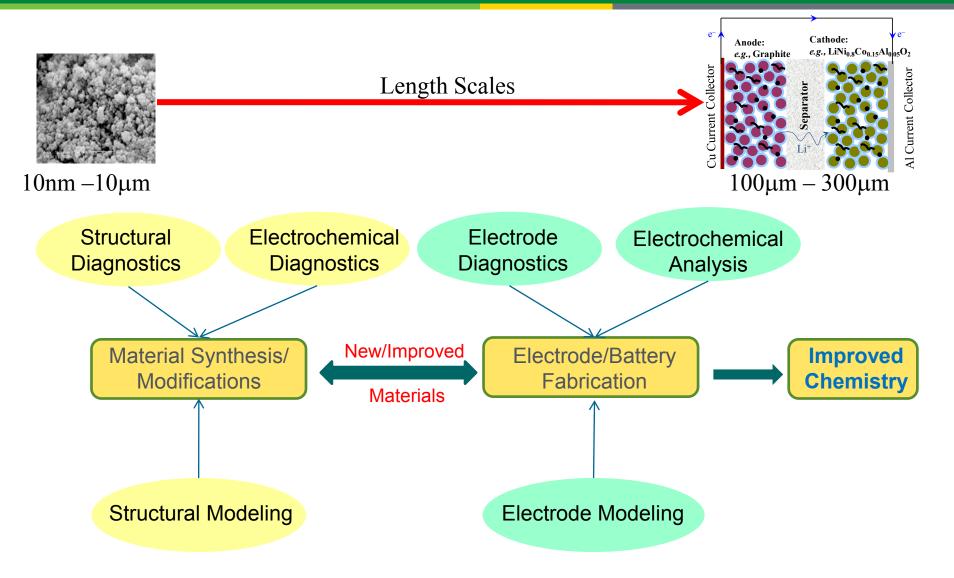
## **Participants**

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



This presentation does not contain any proprietary, confidential, or otherwise restricted information.


Vehicle Technologies Program

eere.energy.gov

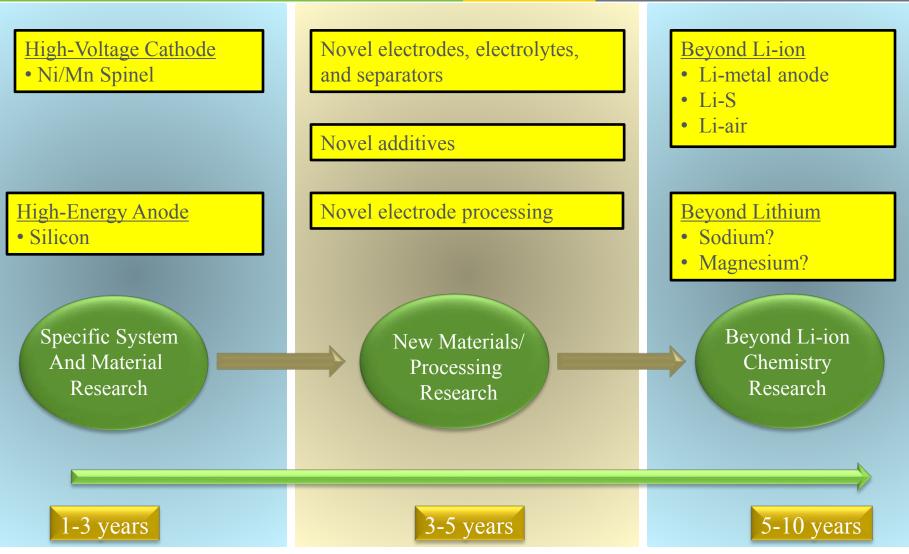
#### Material Synthesis, Diagnostics, and Modeling (Across Length Scales)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



This presentation does not contain any proprietary, confidential, or otherwise restricted information.

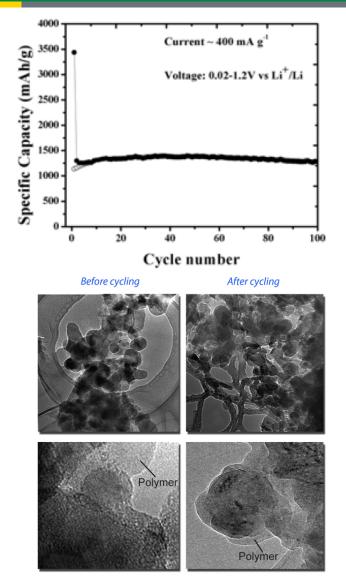

Vehicle Technologies Program

eere.energy.gov

## FY 2012 BATT Portfolio

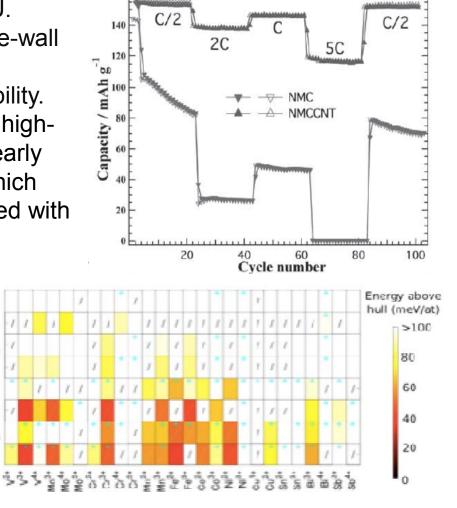
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy




## FY 2011 Highlights: Anodes

U.S. DEPARTMENT OF ENERGY


Energy Efficiency & Renewable Energy

- University of Pittsburgh (Kumta's Group) developed an amorphous-Si electrode that cycles well at 1,300 mAh/g. Depositing thin amorphous-Si films directly on the current collector eliminates the use of binders and conducting agents, thereby simplifying the process and making it amenable to large-scale manufacturing.
- LBNL (Liu's Group) developed a new kind of composite silicon anode that can absorb 8x more lithium than current Li-ion batteries and maintains a high capacity of 2,100 mAh/g in Si after 650 cycles. This anode contains an electronically conductive polymer that can accommodate volume changes in the Si nanoparticles during cycling.



## FY 2011 Highlights: Cathodes

- NREL (Dillon's Group) and Binghamton U. (Whittingham's Group) incorporated single-wall carbon nanotubes into NMC cathodes to enhance their conductivity and rate capability. These composite cathodes exhibit stable highrate capacities, ~130 mAh/g at 5C and nearly 120 mAh/g at 10C for over 500 cycles, which are significantly higher than those achieved with conventional NMC cathodes.
- MIT (Ceder's Group) used highthroughput, computational search to identify new cathode materials based on the sidorenkite crystal structure. Two-electron activity and high specific energies (>800 Wh/kg) may be achievable with this class of materials.



U.S. DEPARTMENT OF

160

ENERGY

Energy Efficiency &

**Renewable Energy** 

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

\$0,-RO\_

SID,-30,

As0\_-B0.

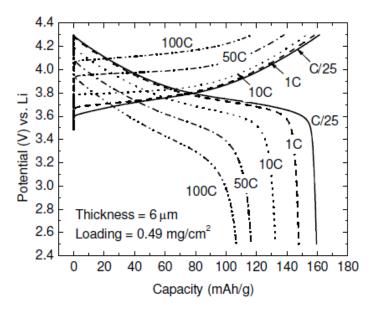
PO\_-80

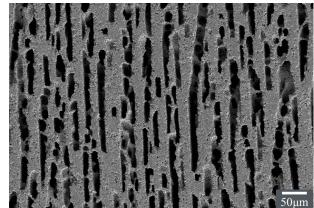
S0,-00,

80,-00,

AlO\_-CO

P0,-00,


## FY 2011 Highlights: Cell Analysis


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

 LBNL (Srinivasan's Group) demonstrated that thin NCM electrodes (~6 µm) can retain more than 50% capacity when discharging at rates up to 100C, with even higher rate capability seen for charge cycles.

MIT (Chiang's Group) produced highdensity, binder-free, sintered LiCoO<sub>2</sub> cathodes with directionally aligned pores. Electrochemical tests indicate high utilization (ca. 140 mAh/g) at C/10, as expected.







Energy Efficiency & Renewable Energy

#### Request for Proposals schedule:

- 2010 New anodes
- 2011 New cathodes
- 2012 Advanced Diagnostics, Modeling and Assembly of **Battery Materials and Electrodes**
- Jan. 2013 Novel Electrolytes and Additives
- Jan. 2014 Novel Anode Materials and Structures
- Jan. 2015 Novel Cathode Materials and Structures  $\geq$

#### Cathodes

| Investigator                                     | Institution           | Project                                                                        |
|--------------------------------------------------|-----------------------|--------------------------------------------------------------------------------|
| J. Cabana                                        | LBNL                  | New Mixed Anion Cathode Materials: Exploration of Li-M-O-F Systems             |
| M. Doeff                                         | LBNL                  | Design of High Performance, High Energy Cathode Materials                      |
| J. Graetz                                        | BNL                   | In-situ Solvothermal Synthesis of Novel High<br>Capacity Cathodes              |
| J. Kiggans, D. Shin, F.<br>Montgomery, N. Dudney | ORNL                  | Lithium-bearing Mixed Polyanion (LBMP) Glasses as Cathode Materials            |
| A. Manthiram                                     | U. of Texas at Austin | High-capacity, High-voltage Cathode Materials for Lithium-ion Batteries        |
| M. Thackeray                                     | ANL                   | High-Capacity Composite Cathode Materials: New Synthesis Routes and Structures |
| J. Zhang                                         | PNNL                  | High-Energy Cathode for Lithium-ion Batteries                                  |

#### Advanced Diagnostics, Modeling, and Assembly of Battery Materials and Electrodes

- □ 170 white papers received
- □ Requested full proposals to be received (May 2012)
- □ Selections expected (Summer 2012)

- Focus groups formed to understand critical issues with high-voltage spinel cathodes and Si anodes
- LiMn<sub>1 5</sub>Ni<sub>0 5</sub>O<sub>4</sub> cathode: side reactions and transport properties. Will continue to understand its fundamental limitations with the aim to improve its performance.
- □ Si anode: define a baseline for new binder studies, investigate shape and morphology impacts on cycling, and new surface coatings and additives to stabilize the anode.

- Complete evaluation of new "Advanced Diagnostics, Modeling, and Assembly of Battery Materials and Electrodes" project proposals and award new contracts
- Solicit new proposals for Novel Electrolytes and Additives