

Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

Tien Q. Duong BATT Program Manager Energy Storage R&D Hybrid and Electric Systems Team Department of Energy

Wednesday, May 15, 2013

Project ID: ES108

Perform cutting-edge research on new materials and address fundamental chemical and mechanical instability issues.

Challenges

- Conduct research and development on the next-generation of battery anodes, cathodes, and electrolytes.
- Understand failure mechanisms to enable higher energy, longer lasting, and less expensive batteries.
- □ Conduct comprehensive modeling of cell and material behavior.

Battery/Energy Storage R&D Funding (\$, M)		FY 2013 Energy Storage R&D Budget** (\$88M)	
FY 2012* Enacted	\$90		Funding
FY 2013** Full Year CR	\$88	Exploratory Materials Research	
FY 2014*** (request)	\$170.5	32%	PotterV
*FY 2012 SBIR/STTR removed. **FY 2013 full year CR inclusive of SBIR/STTR. *** FY 2014 budget request inclusive of SBIR/STTR.		Advanced Cell Development 15%	Development 30%

Participants

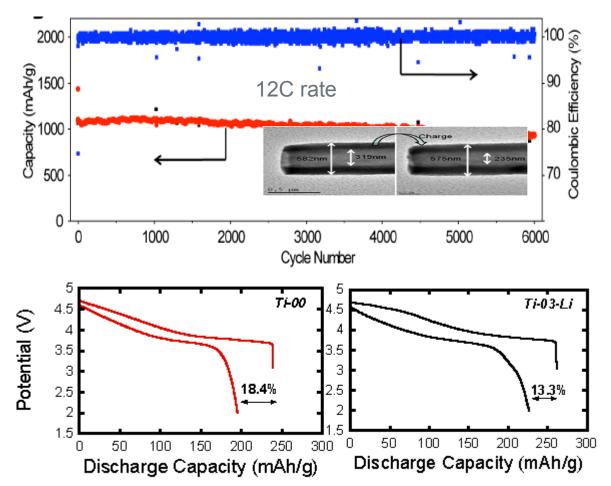
U.S. DEPARTMENT OF ENERGY R


Energy Efficiency & Renewable Energy

Current BATT Portfolio

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

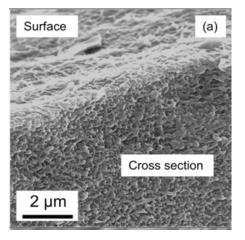


FY 2012 Accomplishments (1 of 2)

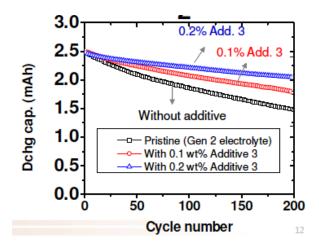
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Electrode Materials



- Silicon nanotube electrodes show potential to eliminate cracking and exhibit excellent cycling capability (Cui, Stanford)
- Ti-doped NMC cathodes show promise with capacities of 225 mAh/g with improved cycling at higher voltages (Doeff, LBNL)



Energy Efficiency & Renewable Energy

Electrolytes, Additives, Separators

Self-assembled separators using a lowcost wet process show promise. Ionic conductivities in membrane comparable to Celgard. (Balsara, LBNL) 3-oxabicyclohexane-2,4-dione additive, predicted by modeling, shows promise in improving cyclability by forming a better SEI. (Amine/Curtiss, ANL)

Advanced Diagnostics, Modeling, and Assembly of Battery Materials and Electrodes

- □ 170 white papers received
- □ 54 full proposals requested
- □ 15 proposals awarded

Cell Development

Investigator	Institution	Project
Yet-Ming Chiang, Antoni Tomsia	MIT LBNL	Design and Scalable Assembly of High Density Low Tortuosity Electrodes
Gao Liu	LBNL	Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes
Karim Zaghib	Hydro-Québec	Assembly of Battery Materials and Electrodes

Modeling

Investigator	Institution	Project
Gerbrand Ceder	MIT	First Principles Calculations of Existing and Novel Electrode Materials
Kristin Persson	LBNL	Understanding and Predicting Novel Electrode Materials from First-Principles
Dean Wheeler, Brian Mazzeo	Brigham Young University	Predicting Microstructure and Performance for Optimal Cell Fabrication
Yue Qi, Xingcheng Xiao, Huajian Gao, Brian Sheldon, Yang-Tse Cheng	General Motors Brown University University of Kentucky	A Combined Experimental and Modeling Approach for the Design of High Current Efficiency Si Electrodes
Perla Balbuena, Jorge Seminario, Kevin Leung, Susan Rempe	Texas A&M University Sandia National Laboratories	First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anode

Diagnostics

Investigator	Institution	Project
Clare Grey	University of Cambridge	NMR and Pulse Field Gradient Studies of SEI and Electrode Structure
Robert Kostecki	LBNL	In-situ Characterization of Interfaces and Interphases in Electrical Energy Storage Systems with Far- and Near- Field Multiprobe Techniques
Guoying Chen	LBNL	Optimization of High-energy Electrode Materials
Nitash Balsara, David Prendergast Jordi Cabana	University of California, Berkeley LBNL	Active Binders for High-energy Density Cathode
Xiao-Qing Yang, Kyung-Wan Nam	BNL	Advanced in-situ Diagnostic Techniques for Battery Materials
Gabor Somorjai, Phillip Ross	University of California, Berkeley LBNL	Analysis of Film Formation Chemistry on Silicon Anodes by Advanced in-situ and operando Vibrational Spectroscopy
Shirley Meng	UC San Diego	Optimization of Ion Transport in High-energy Composite Cathodes

Basic Energy Sciences

- Energy Frontier Research Centers
- Joint Center for Energy Storage Research
 - Multivalent Intercalation
 - High-throughput calculations and datamining of advanced electrolytes

□ ARPA-E

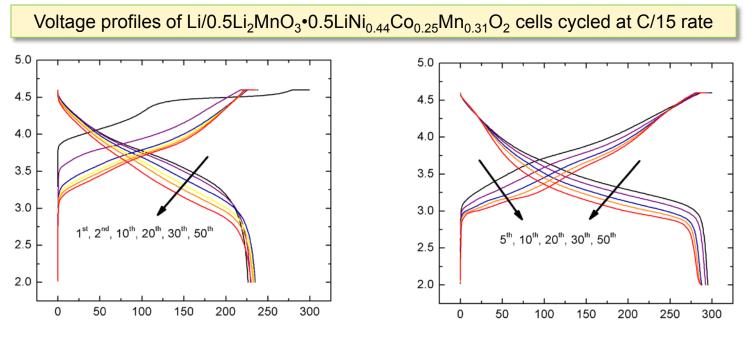
- Lithium/Air and Lithium/Sulfur chemistries

Energy Efficiency &

Renewable Energy

ENERG

□ Solicit new proposals for Novel Electrolytes and Additives


- Primary focus on single ion conducting membranes
- Request for concepts papers announced: January 2014

Issues

- Advanced anode materials (Sn and Si) have large storage capacities (>1,000 mAh/g), but they undergo a significant volume change
 - Have large irreversible capacity loss.
 - Consume electrolyte due to a continuing forming of the SEI layer.
- Stability of Li-rich, layered-cathode (xLi₂MnO₃•(1-x)LiMO₂), spinels and phosphates at high operating voltages remains problematic
 - Current electrolytes are not stable above 4.3V.
 - Metal dissolution resulting in poor performance and short cycle life.
 - Structure of the material changes during cycling causing voltage fade.

Mid-Term R&D: Advanced Lithium-ion (2)

ENERGY Energy Efficiency & Renewable Energy

Approach

Current research includes new synthesis routes, development of novel electrolytes and additives, and applying coatings on particles and electrodes.

Resolving these issues would make feasible an advanced lithium-ion cell with specific energies of 300–350 Wh/kg

Beyond Li-ion chemistries would likely require use of metallic lithium

Li-Metal Anode Issues

- Dendrite formation resulting in loss of lithium and possible safety hazard
- □ Solvent reduction also resulting in loss of lithium and electrolyte

Approach

- Decouple lithium metal from cathode chemistry
 - Block co-polymers
 - Single-ion conducting ceramics
 - Multiple ceramic/polymer stabilization layers

Protection of lithium metal surface from chemical interactions is critically important for beyond Li-ion batteries

Not many options for high-capacity cathodes – still the limiting electrode

- □ Non-intercalation, low-cost, and high-capacity cathode materials
 - LiV_3O_8 : 280 mAh/g, $V_2\text{O}_5$: 441 mAh/g, and others (TBD)
 - Sulfur: 1,675 mAh/g
 - O₂: still have reservations on air electrode

Sulfur Cathode Issues

- Dissolution of lithium polysulfides leading to high self-discharge
- □ Insoluble sulfur species such as Li_2S_2 and Li_2S could passivate the electrodes
- Practical specific energy is 2 times better, but energy density is comparable to Li-ion battery

Approach

- □ Confining the polysulfides in core shell or yolk shell nanostructures
- □ New solvents, additives and dual electrolyte systems