
VEHICLE TECHNOLOGIES PROGRAM — ENERGY STORAGE

Overview and Progress of the Applied Battery Research (ABR) Activity

Peter Faguy Energy Storage Hybrid and Electric Systems Team Vehicle Technologies Program Department of Energy

U.S. DEPARTMENT OF

MAY 14-18, 2012 Washington, D.C.

Annual Merit Review & Peer Evaluation Meeting

2012 U.S. Department of Energy Hydrogen and Fuel Cells Program and Vehicle Technologies Program

Tuesday, May 15, 2012 Project ID: ES014

ABR Program

<u>Timeline</u>

- □ Start October 2008
- □ Finish September 2014
- □ 50% Complete

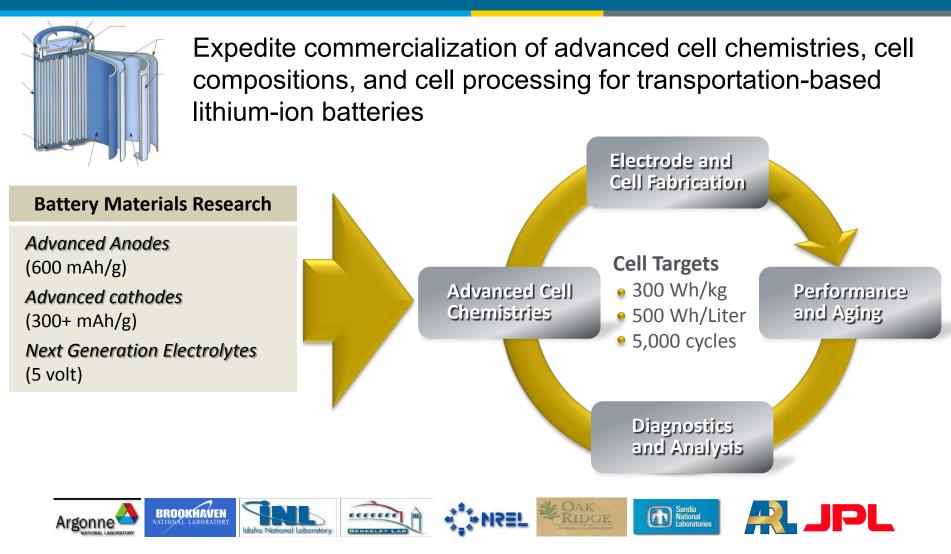
<u>Goals</u>

 By 2014, develop a PHEV battery that can deliver a 40-mile all-electric range and costs \$3,400.

Barriers

- Need active electrode materials to achieve 200 Wh/kg at the cell level for 40-mile PHEV.
- Need higher voltage electrolytes that are stable in the presence of high-V cathodes.
- Need cell chemistries with high inherent stability to achieve life and abuse tolerance goals.

Budget


- □ \$14 million in FY 2011
- **a** \$16 million in FY 2012
- □ FY 2013 TBD

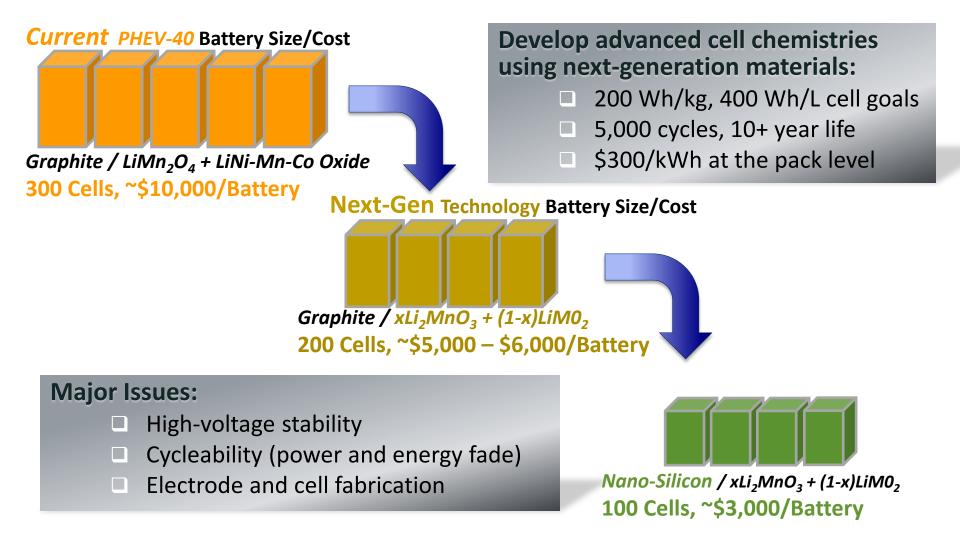
- Meet/exceed VTP's cell capacity/energy goals by understanding and developing solutions for issues with existing active cathode/anode materials.
- Develop electrolyte systems that allow access to higher cell capacity as a result of higher positive potentials for electrochemical couples which have demonstrated specific capacity.
- Significantly improve cycle and calendar life by directly addressing causes of materials degradation, electrode morphological changes, and electrolyte breakdown.
- Improve battery safety by reducing the consequences of a cell runaway or failure event (eliminating the catastrophic failure event) – by improving the thermal stability of cell materials, and reducing the physical hazards associated with cells under abusive conditions.

2015 GOAL: Reduce the production cost of a PHEV battery to \$300/kWh (70% below 2008 value)

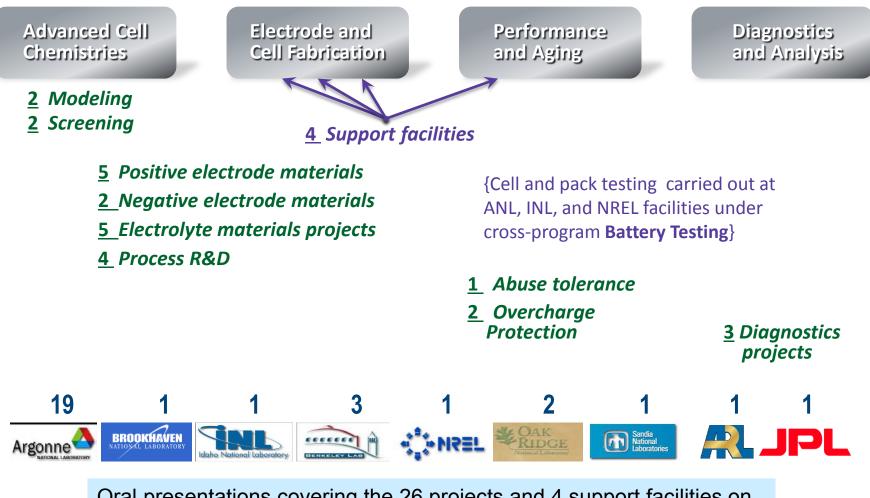
Program Strategy

ENERGY Energy Efficiency & Renewable Energy

Work at the National labs is supported by R&D with industry partners (e.g., Toda, ConocoPhillips, Enerdel, Saft, FMC, Superior Graphite, Daikin Industries, EPRI, Hitachi, and Binrad Industries)


Program Competencies/Facilities

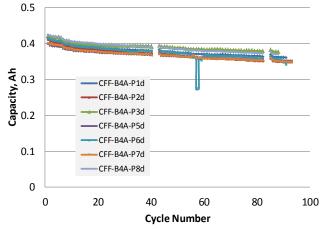
BAITT, ABR, universities	Advanced Battery Materials	 Internal development (e.g. electrode materials, electrolytes, & additives) Supplied from outside Program (e.g. BATT Program, government agencies, academia, corporations, companies, individuals)
Advanced Cell Chemistries	Initial Evaluation	 Screening to evaluate physical properties and electrochemical performance Battery Design Modeling to determine impact on PHEV battery pack performance and cost
Electrode and Cell Fabrication	Materials Scale-Up & Prototype Cell Builds	 Materials Engineering Facility Prototype Cell Fabrication Facility
Performance and Aging Diagnostics and Analysis	Prototype Cell Evaluation	 Detailed electrochemical, physicochemical, mechanical, acoustic, electrochemical modeling, testing, analysis, and abuse tolerance evaluation Post-Test Facility
US Inclusiry	Cell Chemistries to Battery Developers	 Provide results from full analysis of cell chemistries Supply prototype cells and adequate quantities of materials for evaluation


Current and Near-Term Cell Chemistries

U.S. DEPARTMENT OF

Projects

ENERGY Energy Efficiency & Renewable Energy


Oral presentations covering the 26 projects and 4 support facilities on May 16th & 17th (today & tomorrow) ALL DAY

Technical Accomplishments: 2011 Highlights

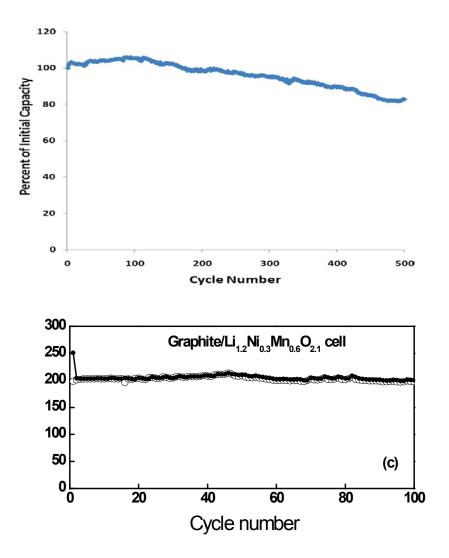
Materials and Cell Fabrication Facilities Operational

- Several composite structure cathode materials from e.g., Toda Kogyo, Argonne R&D, Materials Engineering Research Facility (MERF), were received and characterized. The screening results were transferred to the Cell Fabrication Facility (CFF). Initial cycling data is very promising (right).
- Completed installation of facilities to fabricate and test Li-ion prototype cells.
 - Installed 18650 and pouch cell making equipment
 - Installed custom electrode coating and hot roll press.
 - Installed high shear planetary mixer from Ross.
 - Setup of Cell Formation and Cycling Lab.
 - First cell builds showed good improvement in capacity and rate (right).

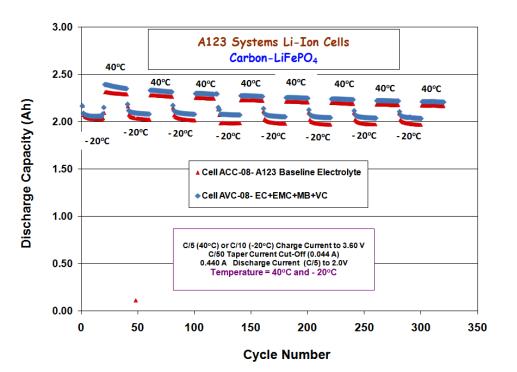
High Energy Cathode (Toda HE5050) vs. Graphite (ConocoPhillips A12)

Rate	Capacity of Cell Builds (mAh/g cathode)								
	1	2	3	4					
С	146	196	150	198					
C/2	163	205	193	213					
C/3	172	209	203	217					
C/5	183	217	215	227					

Electrodes and electrode materials were standardized for ABR participants.


Electrode ID	Foil	Foil Thickness (um)		Total Calendered Electrode Thickness (um)	Calendered Electrode Porosity (%)	Coating Loading - No Foil (mg/cm ²)	Reversible Capacity @ ~1C (RT) (mAh/g)	Maker
A-A001	Cu	10		96.2	37	15.5	330	ANL
A-C001	Al	20		94	46	14	210	ANL
S-A001	Cu	10		50	26	6.38	330	Comm.
S-C001	Al	15		50	37.1	12.28	210	Comm.
S-C002	Al	20		65	30.8	7.99	150	Comm.
E-A001	Cu	10		60		9.6		Comm.
A-C002	Al	20		60	45	7.73	217	ANL

CFF Electrode Library Inventory


2011 Highlights – Cathode Development

- LiCoPO₄ cathode and high-voltage electrolyte. ARL found a new electrolyte additive that enhances the high-V stability of carbonate electrolytes. ARL also developed a 4.8-V cathode material, Fe-LiCoPO₄, in which a portion of the Co is substituted by Fe²⁺ and Fe³⁺, which showed improved stability and cycle life.
- Li rich Mn rich cathode ANL prepared Li_{1.2}Ni_{0.3}Mn_{0.6}O_{2.1} from a spherical nickel manganese carbonate precursor. It shows uniform spherical secondary particles (10μm) made from dense 80 nm primary particles, resulting in high tap density. Stable full cell cycling data shown at right

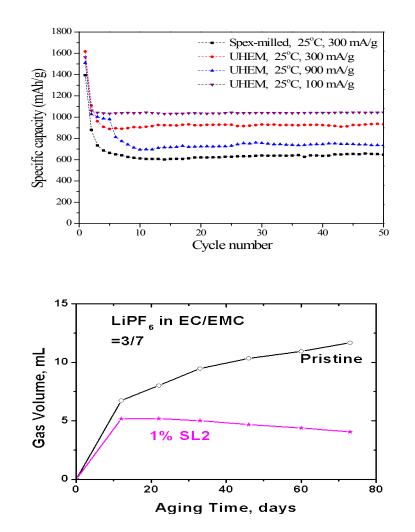
2011 Highlights – Electrolyte Development

Novel electrolytes with wide operating temperature range by JPL. With A123, two promising methyl butyrate-based electrolytes have been incorporated into 26650 LiFePO₄ full cells (i.e., 1.2M LiPF₆ in EC+EMC+MB (20:20:60 v/v %) + 4% FEC and another with 2% VC).

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &


Renewable Energy

- The cycle life of these systems is promising, with over 3,500 cycles (100% DOD) at RT.
- Cycling tests have also been performed between +40° and -20°C to determine the impact of the high T exposure on the low T performance. As shown at right, the cell containing the methyl butyrate+VC performed comparably to the baseline system, illustrating promising lifetime characteristics over harsh conditions.

Vehicle Technologies Program

2011 Highlights – Anode Development

- Novel high energy alloy: ANL identified SiO-Sn_xCo_yC_z as a promising material in terms of cost, voltage, cycling, and capacity. 250 grams were prepared, and achieved 900 mAh/g capacity for 100 cycles. Battery performance was studied at room and high temperature and shows good performance. In the full cell configuration, the anode exhibited high capacity with good cyclability.
- □ Inhibit gassing in LTO: ANL has developed functionalized surface modification agents to address the gassing issue of Li₄T_{i5}O₁₂ (LTO) during high-temperature aging.
 - The major component of the gas was identified.
 - The salt effect on the gassing was identified
 - The source of the gassing was identified, and a mechanism was proposed.
 - A surface modification additive was proposed and tested and shown to be promising.

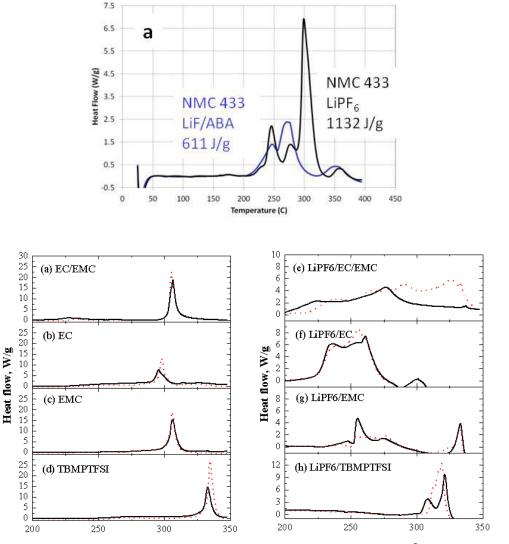
U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

2011 Highlights – Abuse Tolerance


ENERGY Energy

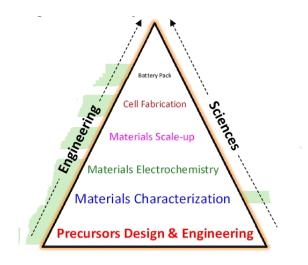
Energy Efficiency & Renewable Energy

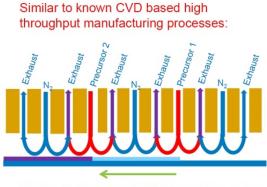
LiF anion binding agent electrolytes developed at SNL – SNL and Binrad Industries obtained dramatic improvements in the thermal stability of cathodes and improvements in cell runaway response using electrolytes with LiF/anion binding agent salts. The specific heat of a NMC433 cathode was much less in LiF/ABA (611 J/g) than in LiPF₆ (1,132 J/g), right.

□ The role of LiPF₆ on the thermal reactivity of cathodes investigated at ANL

- LiPF₆ was investigated against pure solvents, and the salts LiBF₄, LiTFSI and Li₂B₁₂F₁₂.
- LiPF₆ has negative impact on safety of cathode by reducing the onset temperature from ~310°C to about ~230°C.
- The negative impact of LiPF₆ on delithiated NMC will be further investigated using *in situ* high energy XRD.

Temperature, ⁰C

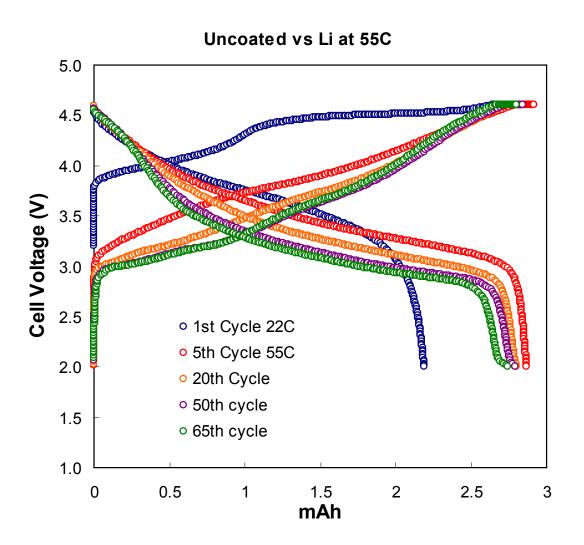

Temperature, ⁰C


2011 Highlights – Processing R&D

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Design of Safer High-Energy Density Materials for Lithium-Ion Cells (Ilias Belharouak, ANL)
- Development of Industrially Viable Battery Electrode Coatings (Robert Tenent, NREL)
- Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes (David Wood, ORNL)
- Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary Batteries (David Wood, ORNL)
- Process Development and Scale-up of Advanced Cathode Materials (Greg Krumdick, ANL)
- Process Development and Scale up of Advanced Electrolyte Materials (Chris Pupek, ANL)
- Fabricate PHEV Cells for Testing & Diagnostics (Andrew Jansen, ANL)


In-line ALD for Manufacturing

Electrode slurry coated foil translates under multiport "AP-ALD" deposition head

- The National Energy Technology Laboratory will shortly issue an FOA for applied research projects in the ABR program.
- The focus of the solicitation will be on understanding and resolving issues with high energy couples, like graphite/layered-layered, Si/high V spinel, and others that promise to enable a PHEV40 or EV battery.
- The solicitation will be open to national labs, universities, and companies. Teaming is strongly encouraged.
- Some parts of the ABR program are considered core program functions and will not be competed. These include support for the three new facilities: material scale up, cell fabrication, and diagnostics.

2012 Plans: Li-rich/Mn-rich High Energy Cathode Focus Groups

U.S. DEPARTMENT OF

Source: Tony Burrell, ANL

- Recently, ANL intensified its focus in ABR to diagnosing and resolving the issues remaining with the Lirich/Mn-rich or layered/ layered class of cathode materials. The first issue under investigation is voltage fade, observed under high voltage stand and cycling.
- The ABR program is also eager to begin focused work on the remaining issues with this class of materials, include metal dissolution and high impedance at low SOC. New approaches and ideas are encouraged.

Technology Transfers

- ANL Overcharge Shuttle ANL has patented a 4V redox shuttle for overcharge protection in LFP-based cells. The new redox shuttle is known as 2,5-di-tertbutyl-1,4-bis(2-methoxyethoxy)benzene or DBBB.
- Collaborative R&D with industry Companies working with the ABR program include
 - ConocoPhillips
 - Superior Graphite
 - FMC
 - A123Systems
 - Dow Chemical
 - _ Quallion

- Yardney
- BASF
- TODA America
- Daikin

QUALLION

- Saft America
- NEC Corp

BASF

NEC

SYSTEM

Future Work

- □ Issue request for proposals for applied research projects
- Diagnose and mitigate the voltage fade issue in layered/layered cathode materials
- □ Develop stable and low-cost electrode and electrolyte systems that will measurably increase energy per unit weight and volume of Li-lon cells.
- Establish performance, life, and abuse tolerance of PHEV-type cells using a graphite/Li transition metal(s) oxide baseline cell chemistry.
- □ Age and measure baseline cells in accelerated manner consistent with PHEV applications.
- Perform detailed diagnostic studies on new and aged cells and employ electrochemical modeling to establish degradation mechanisms.
- □ Conduct cell-level abuse tests.
- Fabricate cells with the most promising advanced materials and cell chemistries (using the Materials Engineering Facility and the Cell Fabrication Facility at ANL)—life and abuse tolerance will be established and compared to baseline cells.
- □ Publish results of work in scientific journals and conferences.

- Full life cycle capabilities (electrode and cell modeling and design, materials scale up, cell building, testing, and diagnostics) are now operational and will enable a flexible, design of experiments approach to resolving issues with high energy couples.
- □ ABR re-focus at ANL
- In FY 2013, a portion of the ABR program will be competed. National labs, universities, and companies are invited to submit proposals.
- The first materials developed and scaled up under ABR have been patented.

Energy Efficiency & Renewable Energy

THANK YOU!