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        Overview 

Timeline 

• Start date: March 2009   

• End date: ongoing 

• Percent complete: ongoing 

Budget 

• Total project funding 
      - FY10     $190K 
      - FY11     $240K 
      - FY12     $240K 
 

 

  

 

 

Partners 

• ANL, BNL, INL, and SNL 

• Berkeley program lead: 
Venkat Srinivasan 

Barriers Addressed 

• Cycle life  

• Abuse tolerance for PHEV Li-
ion batteries 



      Objectives\Milestones 

• Develop a reliable, inexpensive overcharge-protection mechanism. 
• Use electroactive polymers for internal, self-actuating protection. 
• Minimize cost, maximize rate capability and cycle life of 

overcharge protection in high-energy Li-ion batteries for PHEV 
applications.  
 

Objectives 

Milestones 

• Investigate rate performance and cycle life of cells protected by 
electrospun electroactive-fiber composite separators (January 
2013).  

• Evaluate alternative placements of the fiber-composite 
membranes in battery cells (March 2013).  

• Attend review meetings and present research results. 



Lithium-ion Battery Safety Issues 

8 cells 

Inherent thermal instability leads to battery safety issues – 
prevention measures needed. 

“Thermal runaway was 
found on all the 787 

batteries that burned up” 

A lithium battery fire can generate heat 
as high as 2000 degrees F (1093 C) 
The melting point of a 787’s composite 
skin is 649 degrees F (343 C) 



Overcharge Major Concern for Safety  
and Lifetime 

Why 
• Cathode degradation, metal ion 

dissolution, O2 evolution 
• Electrolyte breakdown, CO2 evolution 
• Li deposition on anode, H2 evolution  
• Overheating, breakdown of anode SEI 

layer and thermal runaway 
• Current collector corrosion 
• Explosion, fire, toxics released 
• Accelerated capacity/power fade, 

shortened battery life Before After 2C 
overcharge 

What causes overcharge 
• Over-voltage excursions 
• Charging exceeding electrode capacity 
• Cell imbalance in the battery pack 
• Low-temperature operation at high internal resistance  



Approach – Reversible Soft-Shorting 
Activated by Cell Voltage 
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impregnated in 
the separator 
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battery electrodes 

Anode 

Cathode 

Current Collector 

Current Collector 

Shorting Agent 

Sandwich 

Shorting agent used in 
an external component 
connected parallel to 

the battery cell 

+ - 

 A
no

de
 

C
at

ho
de

 

C
ur

re
nt

 C
ol

le
ct

or
 

   
 S

ep
ar

at
or

 

C
ur

re
nt

 C
ol

le
ct

or
 

C
ur

re
nt

 C
ol

le
ct

or
 

Shorting Agent 

A
no

de
 

C
ur

re
nt

 C
ol

le
ct

or
 

C
ur

re
nt

 C
ol

le
ct

or
 

External 

Shorting agent 
placed between the 
current collectors 

Parallel 

 Anode 

Cathode 

Current Collector 

    Separator 

Current Collector Current Collector 

Sh
or

tin
g 

A
ge

nt
 

Tabs 



Electroactive Polymers As Shorting Agent 
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• Highly reversible redox reactions – capable of reversible, long-term protection. 
• Rapid changes in electronic conductivity upon the redox reaction – cell voltage 

regulates the resistivity of the polymer shunt. 
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Protection Mechanism 
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Most potential drop 
occurs at the small 
region close to the 
anode 
• Soft-shorting 
• May benefit heat 
transfer 

Intrinsic ability to 
carry large current 

Electroactive polymer impregnated separator 



Technical Accomplishments 

• Achieved 40-fold increase in sustainable current in glass fiber 
membrane supported electroactive polymer composites.  
 

• Achieved protection for hundreds of high-rate, deep 
overcharged cycles in several cell chemistries.  Demonstrated 
the most stable overcharge protection reported so far.  
 

• Developed a low-cost electrospinning technique to prepare 
dense, single-layer or bilayer polymer-fiber composite 
separators.  Demonstrated their excellent rate capability and 
stability for overcharge protection.   
 

• Demonstrated stable protection in larger-sized pouch cells and 
the feasibility in scale-up. 



Effect of Membrane Substrate 
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Celgard

Smaller fiber diameter and higher surface area in the GF/C membrane 
led to improved performance in the composite. 



Improved Polymer Distribution on 
Fiber-Membrane Substrates 

Microporous 
membrane 
substrate 

(25µm, 55% 
porosity)  

Glass fiber 
membrane 
substrate  

(85µm, ~75% 
porosity) 

P3BT on Celgard (10wt%) 

Poly(3-butylthiophene) 
(P3BT) 

S n

• Electroactive polymer composites prepared by solution impregnation. 
• Large porosity and open pore structure in the glass fiber membranes promote 

more uniform polymer distribution and reduced surface deposit. 

12wt% P3BT  P3BT on GF/C (12wt%) Whatman GF/C 

Celgard 2500 



Improved Sustainable Current in  
Fiber-Membrane Composites 

Li 
Polymer  
composite 

Improved polymer distribution and utilization in the fiber-membrane 
composite led to 40-fold increase in sustainable current. 
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• Protection in LiNi1/3Co1/3Mn1/3O2 (Gen 
3) cell drastically improved from the 
previous microporous composites. 

• Cell cycled at 0.5C and 60% 
overcharge for more than 200 cycles. 

• Upper limiting voltage increased from 
4.35 to 4.4 V.  Instability suggests 
some polymer distribution issues 
remain in the glass fiber composites. 

Glass Fiber Composites – Long-term 
Protection 

Li 
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• Increase in upper limiting voltage leads to a slight increase in 
discharge capacity in the protected cell.  

• In comparison, the discharge capacity in the unprotected cell rapidly 
decreased upon overcharge abuse. 
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Glass Fiber Composites – Long-term 
Protection 
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• Improved protection in Li1.05Mn1.95O4 
cell cycled at C/6 rate and 50% 
overcharge.   

• Upper cell voltage increased from 4.25 
to 4.35 V during the first 500 cycles.  

• Stable discharge capacity for over 650 
overcharged cycles so far.   
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Glass Fiber Composites – Long-term 
Protection 
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• Li1.05Mn1.95O4 cell cycled at C rate 
and 60% overcharge.  Improved rate 
capability compared to the previous 
microporous composites.  

• Upper cell voltage limited at about 
4.5 V for more than 300 cycles.  

• High-rate overcharge protection 
maintained for more than 500 cycles.   
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Glass Fiber Composites – High-Rate 
Protection 
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Glass Fiber Composites – Rate Capability 

• Upper limiting voltage at 4.35 V when cycling the LiFePO4 cell at 0.5C and 
50% overcharge.  

• 95% capacity retention after the first 350 overcharge cycles at 0.5C.   
• Maintained for more than 470 overcharged cycles. 
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• Increased upper limiting voltage at higher cycling rates. 
• Protection was effective even at 5C charging rate. 

Glass Fiber Composites – Rate Capability 



Electroactive Fibers Synthesized  
by Electrospinning 

• Electrospinning technique used to prepare a range of electroactive fibers 
and fiber composites.  

• Porous structure results from solvent evaporation beneficial for electrolyte 
absorption and wettability in the fiber composites. 

 



Uniform Polymer Distribution in  
Electrospun Fiber Composites 

(-CH2CH2O-)n  PEO  

P3BT 
S n

• Polymers are well mixed at 
individual fiber level - improved 
utilization of electroactive polymer 
and reduced cost for overcharge 
protection.  

2.5 µm 

P3BT(25%)-PEO(75%) S-K O-K 



Dense Single-Layer Electroactive-Fiber 
Composite Membranes 

PFO (25%) - PEO(75%) 

• Dense electroactive-fiber membranes made in varying compositions and 
film thicknesses.  

• A simple, scalable, and cost-effective way to produce lithium-ion battery 
separators capable of voltage-regulated shunting. 



Dense Bilayer Electroactive-Fiber 
Composite Membranes 

• Dense bilayer electroactive-fiber membranes made by direct deposition of 
the second polymer fibers on top of the first polymer fibers. 

• Expansion of voltage window by placing the high-voltage polymer next to the 
cathode to set the protection potential and the lower-voltage polymer next to 
the anode to complete the reversible shunt and protect the high-voltage 
polymer from degradation at the anode potential. 

PFO side P3BT side 



Improved Performance in Electroactive 
-Fiber Composite Membranes 

• Li1.05Mn1.95O4 cell protected by a PFO/P3BT 
bilayer fiber composite.  Cycled at C/2 rate 
and 125% overcharge.   

• Improved polymer utilization and lowered 
internal resistance.  Stable high-rate 
overcharge protection at 4.2 V for 600 
cycles so far. 
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• LiNi0.8Co0.15Al0.05O2 (Gen 2) cell protected 
by a PFO/P3BT bilayer fiber composite.  
Cycled at C/5 rate and 50% overcharge.   

• Upper limiting voltage constant at 4.2 V, 
suggesting improved protection.   

• The decrease in discharge capacity is 
likely due to the instability of Gen 2 
cathode.    
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Improved Performance in Electroactive 
-Fiber Composite Membranes 
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Feasibility in Scale-up  
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C/8 rate, 125% overcharge C rate, 300% overcharge C/4 rate, 150% overcharge 

• Larger-sized Li1.05Mn1.95O4 pouch cell 
protected by the PFO/P3BT glass fiber 
composite.  

• The holding voltage increased with the 
current density.  Stable protection 
achieved at all rates tested. 



                         Collaborations  

• Robert Kostecki (LBNL) – Raman and FTIR Spectroscopy 

• Yuegang Zhang (Molecular Foundry) – Electrospinning 
techniques 

• John Kerr (LBNL) – TGA and DSC, AFM 

• Vince Battaglia, Marca Doeff, Gao Liu (LBNL) – Electrode 
fabrication 

• Quy Ta, Brian Nguyen (American Dye Source, Inc.) – 
Electroactive polymer synthesis 

 



       Future Work 

• Further evaluate the rate capability and cycle life of the cells 
protected by electrospun electroactive-fiber separators. 

• Investigate alternative placement of electrospun electroactive-
fiber membranes to improve cell protection performance and 
lower cost.   

• Explore alternative high-voltage electroactive polymers that are 
suitable for overcharge protection in PHEV batteries.  Prepare 
their polymer-fiber composite membranes and evaluate the 
performance.    

• Investigate overcharge protection in cells with a high-capacity, Li 
and Mn rich Li1+xM1-xO2-type cathode. 

• Collaborate with industry and other national labs to continue the 
evaluation on scaling up the approach. 



          Summary 

• The distribution of electroactive polymer in the composite membrane is 
critical in achieving efficient overcharge protection.  Significant performance 
improvement was obtained on fiber composites.  

o The concept was first demonstrated on glass fiber composites made by 
solution impregnating an electroactive polymer into the Whatman 
membranes.  A 40-fold increase in sustainable current density was 
obtained.  High-rate protection for several hundreds of deep 
overcharged cycles in various cell chemistries was demonstrated for 
the first time.  

o A low-cost electrospinning method was developed to prepare dense 
electroactive-fiber composite membranes in a simple process.  
Protection performance was further improved due to more uniform 
electroactive polymer distribution, with stable and high-rate overcharge 
protection successfully demonstrated on both spinel and Gen 2 cells. 

• Stable and high-rate overcharge protection in larger-sized pouch cells was 
achieved, demonstrating the feasibility in scale-up . 
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