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        Overview 

Timeline 

• Start date: March 2009   

• End date: ongoing 

• Percent complete: ongoing 

Budget 

• Total project funding 
      - FY09     $190K 
      - FY10     $190K 
      - FY11     $240K 

 

  

 

 

Partners 

• ANL, BNL, INL, and SNL 

• Berkeley program lead: 
Venkat Srinivasan 

Barriers Addressed 

• Cycle life  

• Abuse tolerance for PHEV Li-
ion batteries 



      Objectives\Milestones 

• Develop a reliable, inexpensive overcharge-protection mechanism. 
• Use electroactive polymers for internal, self-actuating protection. 
• Minimize cost, maximize rate capability and cycle life of 

overcharge protection in high-energy Li-ion batteries for PHEV 
applications.  
 

Objectives 

Milestones 

• Investigate overcharge protection performance of polymer-fiber 
incorporated composite separators (Jun. 2012). 

• Evaluate the property and performance of new high-voltage 
electroactive polymer candidates (Jul. 2012). 

• Report overcharge protection for pouch cells and other large-
scale battery cells (Sep. 2012). 

• Attend review meetings and present research results. 



The Need for Overcharge Protection 

http://www.rokemneedlearts.com 

Causes of overcharge 
• Cell imbalance in the battery pack 
• Charging exceeding electrode capacity 
• Over-voltage excursions 
• Low-temperature operation under high 

internal resistance  

Consequences of overcharge  
• Cathode degradation, metal ion 

dissolution, O2 evolution 
• Electrolyte breakdown, CO2 evolution 
• Li deposition on anode, H2 evolution  
• Overheating, breakdown of anode SEI 

layer and thermal runaway 
• Current collector corrosion 
• Explosion, fire, toxics released 
• Accelerated capacity/power fade, 

shortened battery life 

http://stores.headway-headquarters.com 
Series-connected LiFePO4 battery pack  
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• Highly reversible redox reactions – capable of reversible, long-term protection. 
• Rapid changes in electronic conductivity upon the redox reaction – cell voltage 

regulates the resistivity of the polymer shunt. 

Our Approach – Electroactive Polymers 
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•  Potential drop occurs at the small region close to the negative electrode  
– Provides soft-shorting 
– Good for heat transfer out of the cell 

•  Polymer is capable of carrying a large amount of current. 
•  System simulation validated by experimental observation. 

Our Approach – Protection Mechanism 
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Our Approach – Advantages 
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Redox shuttle method • Diffusion limited - 
low rate capability and 
poor low temperature 
performance 
• Interference with the 
cell chemistry 
• Solubility and 
volatility issues  

External electronics 

• Expensive  
• Added weight and 
volume  
• One bad cell kills 
the whole string 

Anode 

Cathode 

Current Collector 

Current Collector 

Electroactive Polymer  
Composite 

Sandwich 

+ - 

 A
no

de
 

C
at

ho
de

 

C
ur

re
nt

 C
ol

le
ct

or
 

   
 S

ep
ar

at
or

 

C
ur

re
nt

 C
ol

le
ct

or
 

C
ur

re
nt

 C
ol

le
ct

or
 

Electroactive  
Polymer Composite A

no
de

 

C
ur

re
nt

 C
ol

le
ct

or
 

C
ur

re
nt

 C
ol

le
ct

or
 

External 

Versatility of the polymer approach – cell configuration 
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Technical Accomplishments 

• PFOP was found to have an extended stability window in 
lithium battery electrolytes.  Its ability to provide single-
polymer overcharge protection was demonstrated. 
 
• Modification on electroactive polymer composites led to 20x 
increase in sustainable current density and excellent long-
term overcharge protections for several cell chemistries, 
including Gen2 and Gen3. 
 
• Electroactive polymer-fibers and their composite mats were 
prepared by an electrospinning technique. The behavior of 
the fibers as charge carriers in Li-ion batteries was 
characterized in an in situ optical cell.  
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Potential vs. Li+/Li (V) 

1.5<V<4.3V 
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2<V<4.3V 

1 M LiPF6/EC+PC, 5 mV/s 

Poly(3-phenylthiophene)  
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• A bilayer arrangement was 
previously adapted to protect the 
high-voltage polymer from 
degradation at the anode potential.  

Single-layer 

Bilayer 

cycle number 



• PFOP has the highest onset 
oxidation voltage (4.25V) 
among the investigated 
electroactive polymers. 
• Improved low-voltage 
stability at anode. 

Extended Redox Window in PFOP 
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Single-polymer Protection Achieved 

• Cell cycled at 0.5C and 40% 
overcharge. 
• Improved low-voltage stability 
allows for stable single-polymer 
protection. 
• Improved discharge capacity upon 
cycling may be a result of enhanced 
conduction in the electrode.  
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Composites Modified for Better 
Polymer Distribution 

Polypropylene membrane (Celgard) 
 25µm,  55% porosity  

Glass fiber membrane (Whatman)  
85µm, ~75% porosity 

Membrane substrate 

10wt% P3BT 

12wt% P3BT  

P3BT + membrane composite 

P3BT 
S n

• Large porosity and 
open pore structure 
in the glass fibers 
led to more uniform 
polymer distribution 
in their composites. 



Improved Sustainable Current Density 
in Modified Polymer-composites 

Li 
Polymer  
composite 

• Up to 20x improvement in sustainable current density. 
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• Cycled at 0.5C rate and 50% 
overcharge.   

• Upper cell voltage limit at 4.4V, 
maintained for more than 470 
overcharge cycles. 
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Long-term Overcharge Protection 
Achieved – LiFePO4 Cell 

Li 
Current Collector 

Current Collector 

P3BT composite 

PFO composite 
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• Increased upper cell voltage limit at 
higher rates. 

• Protection achieved even at 5C 
charging rate. 

• 95% capacity retention after the 
first 350 overcharge cycles at 0.5C.   
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Long-term Overcharge Protection 
Achieved – Spinel Li1.05Mn1.95O4 Cell 

• Cycled at 0.2C rate and 60% overcharge.   
• Upper cell voltage limit at 4.45V. 
• Discharge capacity maintained for more than 120 overcharge cycles.   
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Long-term Overcharge Protection 
Achieved – LiNi1/3Co1/3Mn1/3O2 Cell 

• Cycled at 0.5C and 50% overcharge. 
• Upper cell voltage limit increased 

from 4.35 to 4.4V during the first 200 
overcharge cycles, which results in a 
slight increase in discharge capacity.   
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Electroactive-fibers Synthesized by 
Electrospinning 

• Modification in electrospinning successfully made to produce polymer 
fibers from non-aqueous solution in a easily scalable manner. 
 



PFO(16%)-PMMA(84%) 

Versatility of Electrospinning 

PFO(36%)-PMMA(64%) 

P3BT(75%)-PEO(25%) 

• The technique can be used to 
prepare a range of electroactive 
fibers and fiber-composites.  

• Porous structure results from solvent 
evaporation may be beneficial for 
electrolyte absorption and wettability. 



Uniform Polymer Distribution in 
Fiber-composites 

P3BT(22%)-PMMA(78%) 

2.5 µm 
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(-CH2CH2O-)n  PEO  

P3BT(75%)-PEO(25%) 

Uniform Polymer Distribution in 
Fiber-composites 

P3BT 
S n

2.5 µm 

S-K O-K 
• Polymers are well 

mixed at individual fiber 
level.   

• Electrospinning 
Improves utilization and 
efficiency of the 
electroactive polymer, 
and reduces  the cost of 
overcharge protection.  
 
 



I=40mA/cm2, V=4.25V 

Pt 

     PFO-PEO fiber film Li (-) (+) 

Current collector Open end 

Current Passage in the Fiber-
composite Film  

• Color changes from yellow to black upon 
oxidation. 

• Distinct boundary between the oxidized and 
the neutral PFO suggests sufficient inter-
connection between fibers for charge carriers 
to propagate across.  



Electroactive-fiber-composite 
Membranes Made by Electrospinning 

PFO (25%) - PEO(75%) 

• Dense electroactive-fiber membranes can be made in various thickness.  
• A cost-effective way to produce lithium-ion battery separators capable of 

voltage-regulated shunting. 
 



                         Collaborations  

• Robert Kostecki (LBNL) – Raman and FTIR Spectroscopy 

• Yuegang Zhang (Molecular Foundry) – Electrospinning 
techniques 

• John Kerr (LBNL) – TGA and DSC, AFM 

• Vince Battaglia, Marca Doeff, Gao Liu (LBNL) – Electrode 
fabrication 

• Quy Ta, Brian Nguyen (American Dye Source, Inc.) – 
Electroactive polymer synthesis 

 



       Future Work 

• Evaluate rate capability and cycle life of the cells protected by 
electrospun electroactive-fiber-separators. 

• Explore alternative polymer placement in the cells that may lead to 
improved protection and lowered cost.   

• Continue to explore other high-voltage electroactive polymers that 
are suitable for overcharge protection for PHEV batteries.  
Optimize the morphology of their composites for maximum 
protection.    

• Investigate overcharge protection for the cells with other high-
voltage cathodes, particularly the Li and Mn rich Li1+xM1-xO2-type 
cathodes. 

• Collaborate with industry and other labs to “scaling-up” the 
approach. 



          Summary 

• An electroactive polymer with extended stability window was 
discovered, which was found to be capable of single-polymer 
overcharge protection for lithium-ion battery cells.   

• The distribution of polymer in the composite is critical for long-
term overcharge protection.  Protection for hundreds of cycles 
can be achieved by using the glass fiber composites with better 
distribution. 

• Electroactive-fiber-composite membranes with uniform polymer 
distribution were made by electrospinning.  This type of 
membranes are expected to provide improved protection with 
higher polymer utilization and efficiency, and they can be flexible 
in their placement in the cells.  

• Electrospinning can be a cost-effective way to achieve 
overcharge protection using the electroactive polymer approach.  
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