Optimization of an Advanced Passive/Active Diesel Emission Control System

Benjamin C. Shade¹, Osama Ibrahim², Hans Wenghoefer²

¹West Virginia University, Morgantown, WV

²Rypos, Inc, Holliston, MA

2008 Diesel Engine-Efficiency and Emissions Research Conference

Dearborn, MI August 5, 2008

Objectives

- To quantify emission levels from an off-road engine equipped with aftertreatment technologies provided by Rypos, Inc.
 - Total Hydrocarbons (HC)
 - Oxides of Nitrogen (NOx), Nitric Oxide (NO), Nitrogen Dioxide (NO₂)
 - Carbon Monoxide (CO)
 - Carbon Dioxide (CO₂)
 - Diesel Particulate Matter (PM)
- Utilize the ISO 8178-C1 test cycle
- Compare results of actively and passively regenerated Diesel Particulate Filters

Test Equipment

- Tests conducted using 40 CFR Part 1065 designed Constant Volume Sampling (CVS) system
- Eaton 400 hp Alternating Current Dynamometer
- Emission measurement technologies
 - HC: Flame Ionization Detector (FID) (reported as ppmC₁)
 - NOx, NO: Dual Heated Wet Chemiluminescent Detection
 - NO₂: Difference of NOx and NO Results
 - CO, CO₂: Non-Dispersive Infrared (NDIR) Detection
 - PM: Gravimetric Analysis

Engine Specifications

- 2006 Caterpillar 3054C (Tier II Certification Level)
 - 4.4 L Displacement
 - 4 Cylinder
 - 93 hp @ 2223 rpm
 - 292 ft-lb @ 1393 rpm
 - 200 scfm air flow at rated conditions

- Engine installed on AC engine dynamometer test bed
- Factory radiator and cooling system utilized

Test Cycle

• ISO 8178-C1 8 Mode

Mode	Condition	Speed	Torque
		(rpm)	(ft-lb)
1	R100	2223	(Full Rack)
2	R75	2223	165
3	R50	2223	110
4	R10	2223	22
5	l100	1393	(Full Rack)
6	l75	1393	219
7	I 50	1393	146
8	Idle	785	0

Rypos Technology

- Actively Regenerated DPF
 - Electrical regeneration
 - Sintered metal fibers
 - Low exhaust backpressure
 - Regeneration independent of exhaust temperature
- Passively Regenerated DPF
 - Sintered metal fibers
 - Regeneration based on exhaust temperature

Test Configurations

- Baseline Engine
- Engine with Actively Regenerated DPF
 - Equipped without Diesel Oxidation Catalyst
 - Equipped with Diesel Oxidation Catalyst
- Engine with Passively Regenerated DPF
 - Equipped with Diesel Oxidation Catalyst

Actively Regenerated DPF

- Regeneration controlled by external control module
- 2 active legs, 1 passive leg
- Cycle time of approximately 15 minutes
- Can be deactivated to become a passive DPF

Actively Regenerated DPF

Passively Regenerated DPF

- Regeneration based on exhaust temperature
- Comprised of three sections
- Equipped with internal oxidation catalyst

Passively Regenerated DPF

Results

- The following charts show composite emission constituent results for five different engine/exhaust configurations
 - Uses modal weighting factors for ISO 8178-C1
- Configurations
 - Baseline (Engine Out)
 - Active DPF
 - Active DPF with DOC downstream
 - Active DPF with DOC upstream
 - Passive DPF with internal DOC

Conclusions

- Both active and passive DPF technology shows high (≥90%) reduction of PM emissions
- Rypos proprietary technology has potential to reduce NO₂ emissions during a retrofit application
- DPF and DOC combined technologies show reduction of PM, HC (~85%), and CO (~90%)
- Minimum impact on fuel consumption
 - Variation in CO₂ emissions can be due to modal oscillations

Current and Future Work

- Further evaluate NO₂ reduction performance by increasing NO₂ concentrations in the engine exhaust
 - Use of intercooler
 - NO₂ injection
- DOC Technology Evaluation
 - Emphasis placed on NO₂ reduction
- Heavy heavy-duty engine research
 - High exhaust flow

Thank you

benjamin.shade@mail.wvu.edu