

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics

Sreeram Vaddiraju Texas Engineering Experiment Station (Texas A&M University System)

ACE071

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

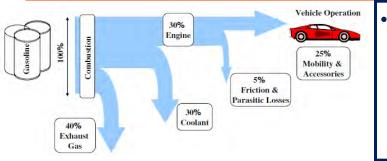
Timeline

- 01/01/2011
- 12/31/2013
- 10%

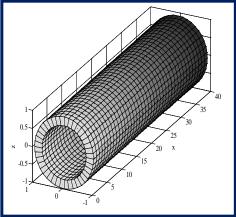
Budget

- Total project funding
 - DOE:\$ 426,950
- Funding received in FY10
 - DOE:\$ 141,757
- Funding for FY11
 - DOE:\$ 137,550

- Barriers addressed
 - MATERIALS: Bulk synthesis of inorganic quantum wires with diameters less than 5 nm.
 - INTERFACES: Large-scale assembly of inorganic nanowires with engineered interfaces that are electrical conductors and thermal insulators.
 - METROLOGY: Finding metals that have low contact resistance with the interfaceengineered inorganic-organic hybrids.
- Ultimate Goal: Thermoelectric modules with *zT*>3 performance



None

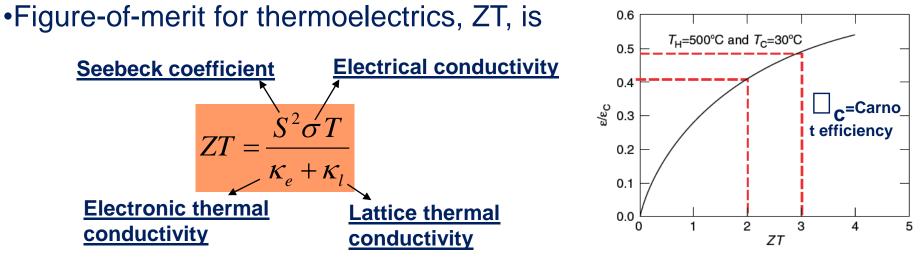


Objectives: Inorganic-Organic Hybrid Thermoelectrics

To recover waste heat from automobile exhausts through the fabrication of large area thermoelectric modules that exhibit *zT*>3 performance. Pictorial Representation of a thermoelectric module

Objectives of this Project

- Barriers addressed
 - Bulk synthesis of inorganic quantum wires with ultra-small diameters (< 5 nm) of $CoSb_3$ and InSb for achieving zT>3 thermoelectric performance
 - Large-scale assembly of inorganic nanowires in an interface-engineered manner using conjugated organic molecular linkers and conducting polymer films into cm² sized thermoelectric devices that exhibit *zT*>3 performance
 - Deduction of the metal that has least contact resistance with the inorganic-organic hybrids for assembling thermoelectric devices into modules.


Milestones: Inorganic-Organic Hybrid Thermoelectrics

1447

Month/Year	Milestone or Go/No-Go Decision
March 2011	 MILESTONE: Accomplished the synthesis of Zn₃P₂, InN and CoSb₃ nanowires using self-catalysis. MILESTONE: In-situ functionalization of nanowires with conjugated linker molecules was accomplished. GO/NO-GO DECISION: <i>Ex-situ</i> functionalization of nanowires is not as effective as <i>in-situ</i> functionalization and does not efficiently lead to covalent bond formation between nanowire surfaces and the conjugated linker molecules. MILESTONE: Interface-engineered assembly of inorganic nanowires to each other through linker molecules was accomplished and the thermopower of the resulting pellet was successfully measured.

Approach: Tailored Synthesis and Assembly of Quantum wires

•A large temperature difference, 800 °C, is available for power generation in vehicles.

•Both n-type and p-type materials with $ZT \sim 3$, with low contact resistances or losses, are necessary for efficiently converting waste heat from the exhaust into electricity.

•Matsubara and Matsuura, A Thermoelectric Application to Vehicles (Chapter 52), in Thermoelectrics Handbook: Macro to Nano, 2006. •Tritt *et al*, MRS Bulletin, 33, 367, 2008.

Approach: Tailored Synthesis and Assembly of Quantum wires

$$ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_l}$$

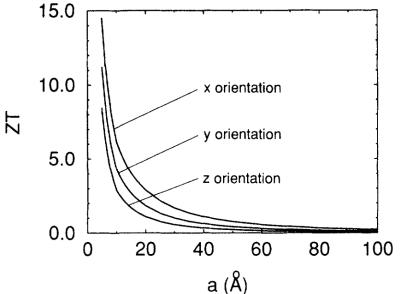
• κ_e cannot be reduced without reducing σ (Wiedemann-Franz Law) •ZT enhancement requires reduction in the κ_l of materials,

$$\kappa_{l} = \frac{1}{3} \int c_{\lambda}(\lambda, T) \nu(\lambda) L(\lambda, T) d\lambda$$

 λ is the wavelength, c_{λ} is the spectral specific heat per unit wavelength, v is the group velocity, L is the spectral mean-free path.

•Theoretical predictions indicate that κ_l of materials could be reduced

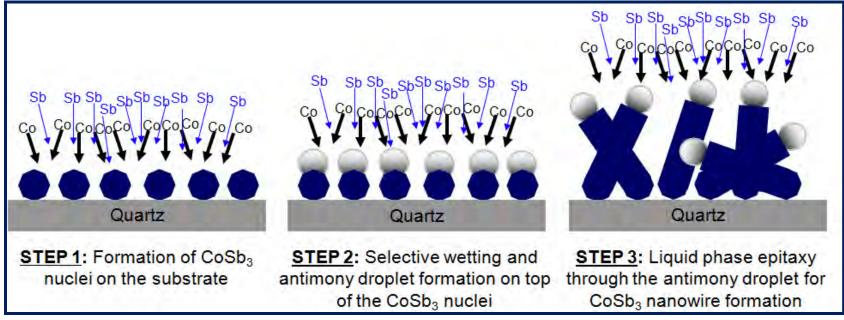
- either by a reduction in $c_{\lambda}(\lambda, T) u(\lambda)$ through phonon confinement in nanowires and superlattices with extremely small dimensions, or
- by a reduction in $L(\lambda, T)$ through enhanced phonon scattering in boundaries and interfaces in nanowires and composites.

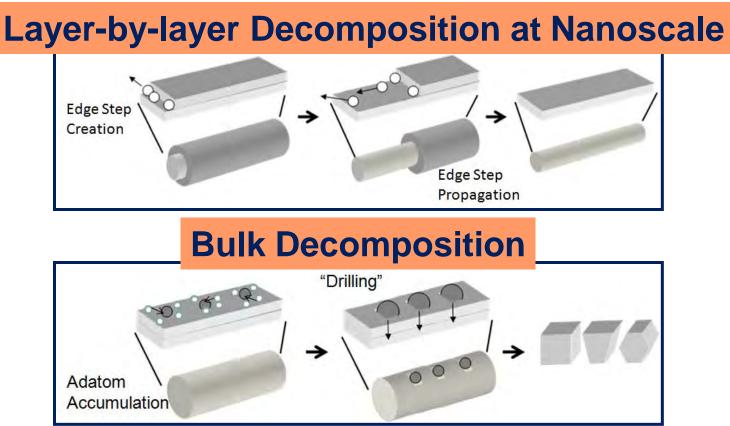


Approach: Strategy for Enhancing ZT

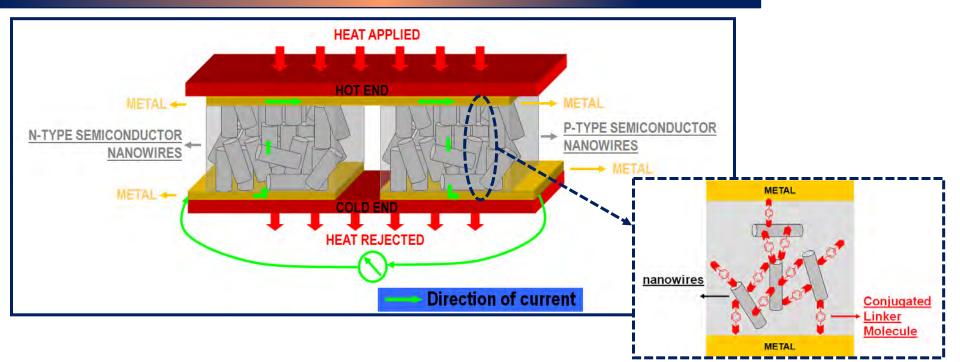
- •Single-crystalline nanowires exhibit good electrical conductivity (σ) along their lengths.
- •Lattice thermal conductivity in nanowires can be scaled to (diameter/roughness)², and hence can be reduced through
 - a reduction in their diameters (to sub-5 nm length scales)
 enhancing surface roughnesses
 - •enhancing surface roughnesses

•How can the bulk synthesis of powders of nanowires with sub-5 nm diameters be accomplished in a pristine and contaminant-free manner? How can they be assembled on a large-scale in a reliable manner?

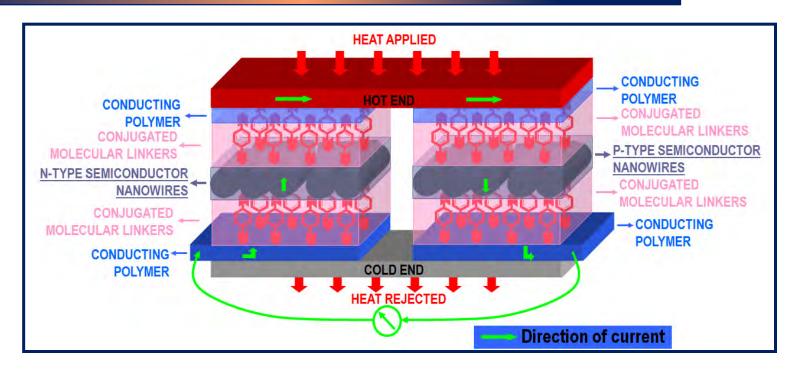

> •Chen and Dames, Thermal Conductivity of Nanostructured Thermoelectric Materials. In Thermoelectrics Handbook, CRC Press, 2005. •Martin *et al*, Phys. Rev. Lett., 102, 2009. •Hicks and Dresselhaus, Physical Review B, 47, 16631, 1993.


Approach: Bulk Synthesis of Nanowires

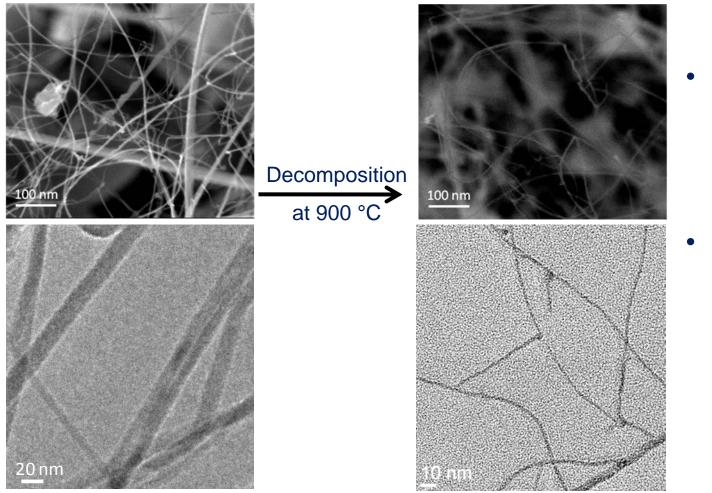
- Self-catalysis allows for the formation of nanowires devoid of any unintentional contaminants or dopants.
- Self-catalysis is scalable for the bulk production of nanowire/quantum wire powders
- Self-catalysis can be employed to obtain nanowires of any compound semiconductor (e.g., InSb, CoSb₃, Zn₃P₂)


Approach: Post-synthesis decomposition for Quantum Wires

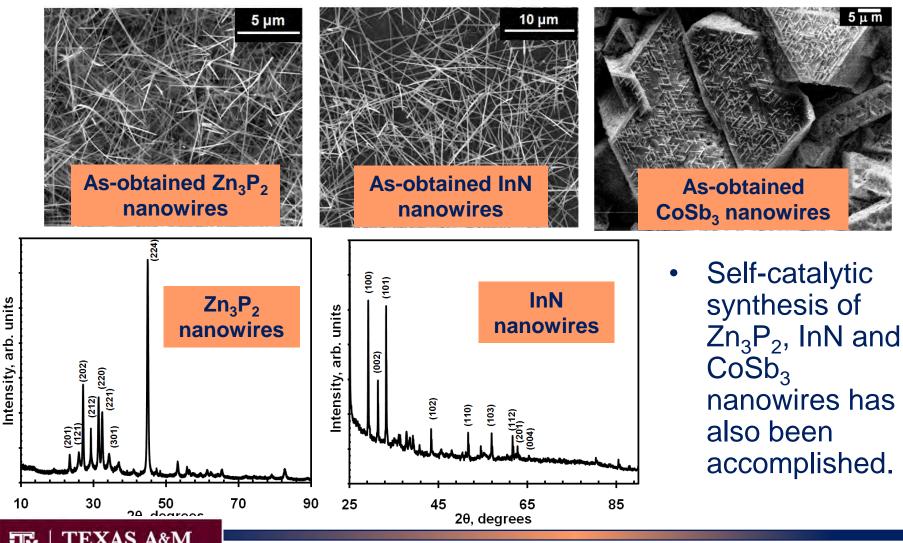
 Layer-by-layer decomposition, an exclusive nano-scale phenomenon, will allow for obtaining diameters less than 5 nm in quantum wires in a uniform and reproducible manner

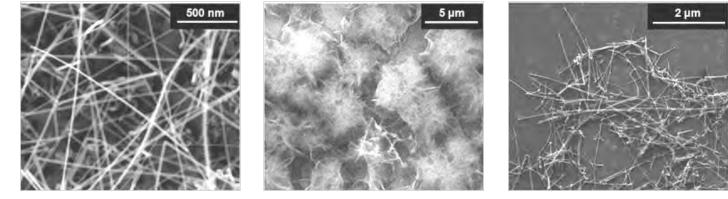

Approach: Interface-Engineered Assembly of Quantum Wires I

- "Molecular wiring" of nanowires to each other makes the nanowires pellets robust and delamination-free
- Chemistry of the "molecular wires" can be varied to tune the interfacial electrical and thermal transport .


Approach: Interface-Engineered Assembly of Quantum Wires II

- Conducting polymer films form a uniform electrical contact between the nanowires.
- Interfacial electrical and thermal transport tunable through variations in the linker molecule and conducting polymer chemistries.


Technical Accomplishment: Synthesis

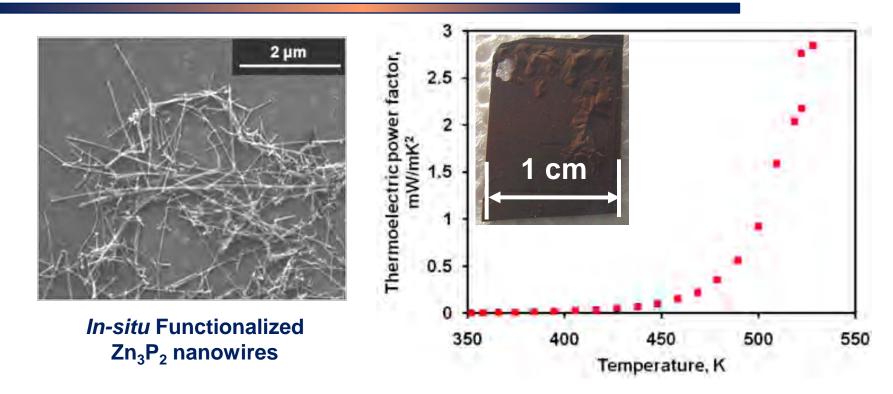

- Self-catalysis was employed for the synthesis of GaN nanowires
- Post-synthesis decomposition was employed to reduce their diameters to less than 5 nm.

Technical Accomplishment: Synthesis of Zn₃P₂, InN and CoSb₃ Nanowires

Technical Accomplishment: *In-Situ* **Functionalization of Nanowires**

As-obtained Zn₃P₂ nanowires

Ex-situ functionalized Zn₃P₂ nanowires

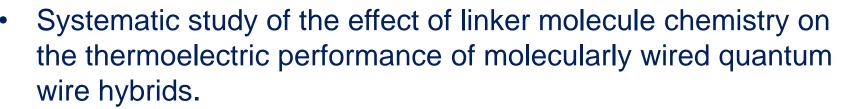

In-Situ functionalized Zn_3P_2 nanowires

Typically, Zn₃P₂ reacts with moisture and decomposes into Zn(OH)₂ and PH₃ *In-Situ* functionalized Zn₃P₂ nanowires remain stable even after a extended periods of weeks and months, unlike ex-situ functionalized

wires.

Technical Accomplishment: Thermopower of Interface-Engineered Nanowire Pellets (Strategy I)

• Bulk synthesized nanowire powders were pressed into 1 cm² sized pellets the measurement of thermoelectric power factor (S² σ).



Future Work: Activities Planned for the Next part of FY 10 and FY 11

- Self-catalytic assisted synthesis of antimonide nanowires, decomposition of nanowires into quantum wires with sub-10 nm diameters.
- Diameter control of the skutterudite quantum wires to 5 nm or less (skutterudite nanowire synthesis has already been accomplished).
- *In-situ* functionalization of the antimonide and skutterudite quantum wires.
- Measurement of the thermoelectric performance of quantum wires assembled using conjugated linker molecules in the temperature range of 25-800 °C.

Future Work: Activities Planned for FY12

- Microscopic and spectroscopic analysis of the "interfaceengineered" inorganic-organic junctions.
- Measurement of the thermoelectric performance of inorganicorganic hybrids comprised of nanowires assembled on top of conducting polymer platforms in the temperature range of 25-800 °C.
- Finding metals that have low contact resistance with the interface-engineered inorganic-organic hybrids for the fabrication of thermoelectric modules comprised of many thermoelectric cells.

Summary

- This project is aimed at the recovering waste heat from automobile exhaust through the fabrication of inorganic-organic hybrid thermoelectric modules with *zT*>3 performance.
- Inorganic organic hybrid thermoelectric devices will be fabricated using the following components:
 - Inorganic quantum wires with diameters less than 5 nm
 - Conjugated linker molecules (or molecular wires)
 - Functionalized conducting polymer thin films
- Our approach has the following steps:
 - assembling the quantum wires on a large-scale into inorganic-organic hybrid thermoelectric devices by either tethering them to each other or to conducting polymer films through organic molecular linkers, and testing their performance in the 25-800 °C temperature regime.
 - Assembling thermoelectric devices modules by identifying metals that have low contact resistance with the inorganic-organic hybrids.
- So far, the bulk synthesis and *in-situ* functionalization of Zn₃P₂, InN and CoSb₃ nanowire powders has been accomplished.

