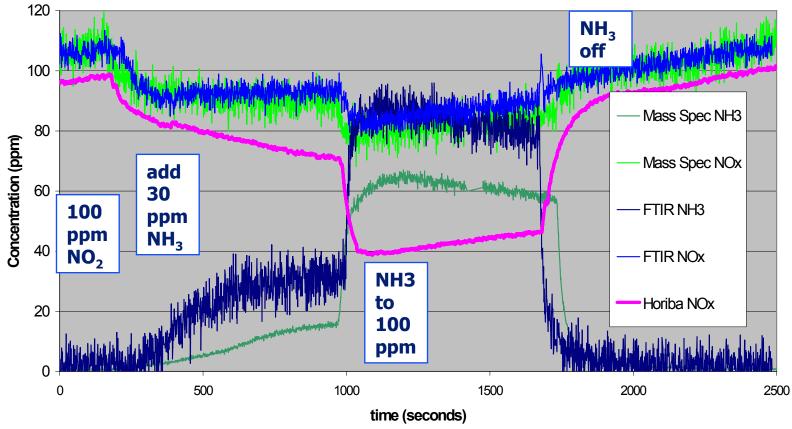
NOx Measurement Errors in Ammonia-Containing Exhaust

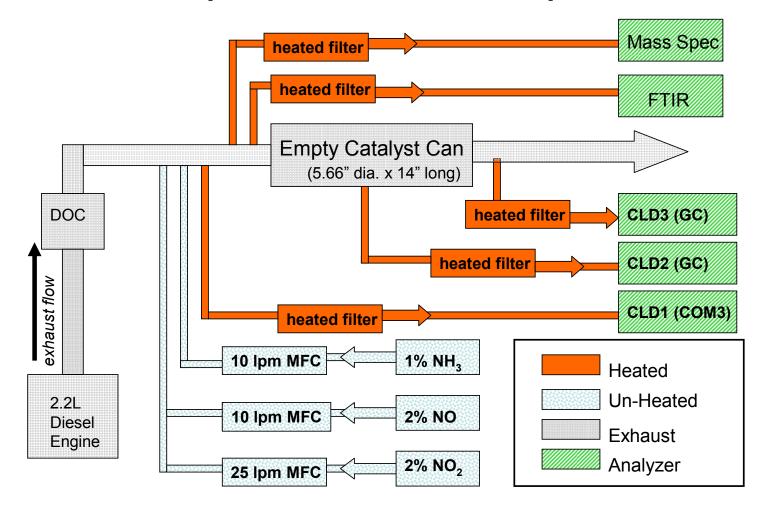
August 22,2006

Diesel Engine Emissions Reduction Meeting Detroit, MI

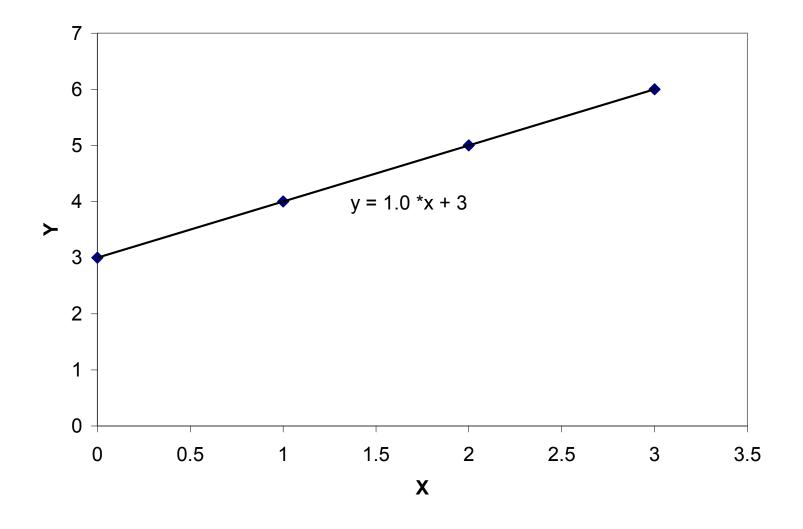
John Hoard, Rachel Snow, Lifeng Xu, Robert Hammerle, Cliff Montreuil *Chemical Engineering Department* Christine Gierczak *Physical and Environmental Sciences Department* S. Iskander Farooq *Safety Methods Development Department*


Introduction

- Diesel NOx aftertreatment can lead to ammonia (NH₃) in exhaust
 - Urea-SCR systems
 - LNT systems near end of rich regeneration
 - LNT-SCR combinations
- NH₃ can cause significant measurement errors with various NOx instruments
- Larger issue for engine-out and mid-bed samples


Example of Concern

NOx (Introduced as NO2) Measurement on Various Analyzers

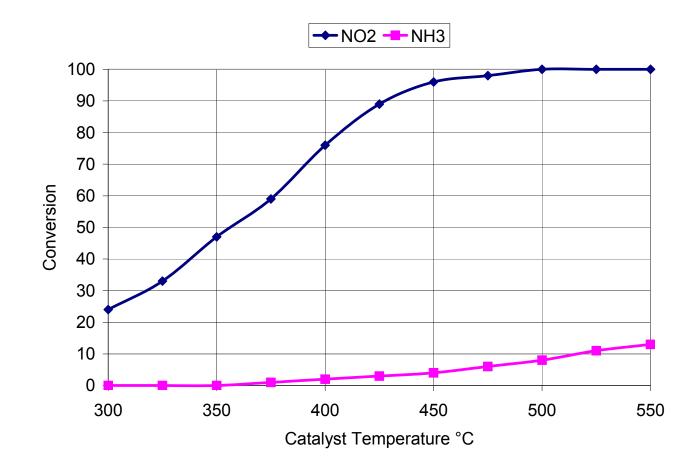


Experimental Set-up

Standard Addition Test Concept

Test Design Replicate Three

	MFC Set	tings		Standard Addition to Exhaust				Flow rates			
	NO	NO2	NH3	NO	NO2	NOx	NH3	Total	NO	NO2	NH3
	%	%	%	(ppm)	(ppm)	(ppm)	(ppm)	L/min	L/min	L/min	L/min
1	100	100	0	75	226	301	0	1330	10	15	0
2	100	100	100	75	224	299	149	1340	10	15	10
3	50	100	100	37	225	262	150	1335	5	15	10
4	100	50	100	75	113	188	150	1332	10	7.5	10
5	50	50	100	38	113	151	151	1327	5	7.5	10
6	50	50	50	38	113	151	76	1322	5	7.5	5
7	50	50	0	38	114	152	0	1317	5	7.5	0
8	50	100	0	38	226	264	0	1325	5	15	0
9	50	100	50	38	226	263	75	1330	5	15	5
10	100	50	50	75	113	188	75	1327	10	7.5	5
11	100	50	0	76	113	189	0	1322	10	7.5	0
12	100	100	50	75	225	300	75	1335	10	15	5



Chemiluminescent Analyzer (CLD)

- Developed at Ford Research in early 1970's
- Most common NOx measurement
- Actually measures NO
 - NO + $O_3 \rightarrow NO_2^* + O_2$
 - $NO_2^* \rightarrow NO_2 + photon$
- NO₂ reduced to NO in converter; typical compositions
 - Carbon-molybdenum
 - Molybdenum
 - Carbon
 - Gold
 - Ferrous sulfate
 - Stainless steel

Carbon-Molybdenum Converter

Data from Breitenbach and Shelef

Ammonia Reactions

- NOx can be removed by reactions with ammonia
 - Ammonium nitrate:

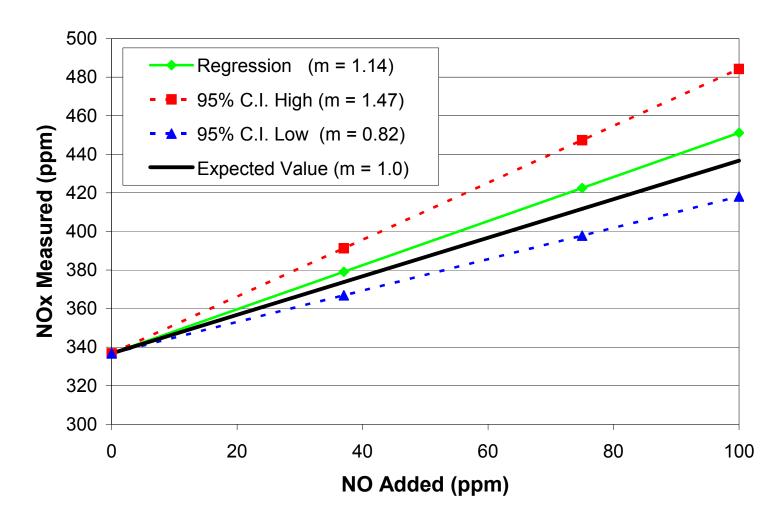
•
$$3NO_2 + H2O \rightarrow 2HNO_3 + NO$$
 (1)


- $NH_3 + HNO_3 \rightarrow NH_4NO_3$ (2)
- SCR reactions:

•
$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$$
 (3)

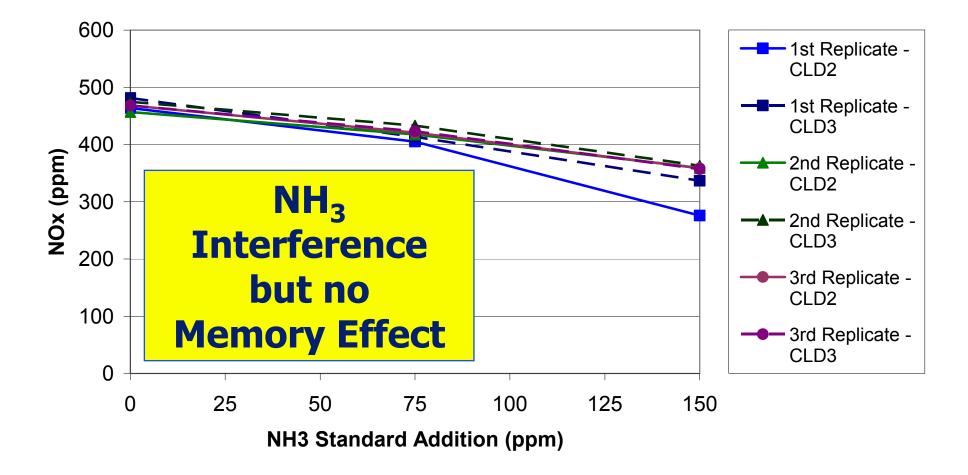
- Must keep sample lines above 100°C to avoid ammonium nitrate
- Choose converter that does not promote these reactions

CLD w/ COM3 Converter Main Effect of NH3 on NOx Measurement



CLA NOx Response

- Regression equation from second replicate
- CLA with <u>COM3</u> catalyst
- NOx = 337 + 1.14 NOadd + 0.924 NO2add 0.164 NH3add
- $R^2 = 0.978$
- All three coefficients are not zero at 95% confidence
- NOadd and NO2add slopes could be 1.0 within experimental confidence limits



95% Confidence Interval for Regression Coefficient (CLD - COM3)

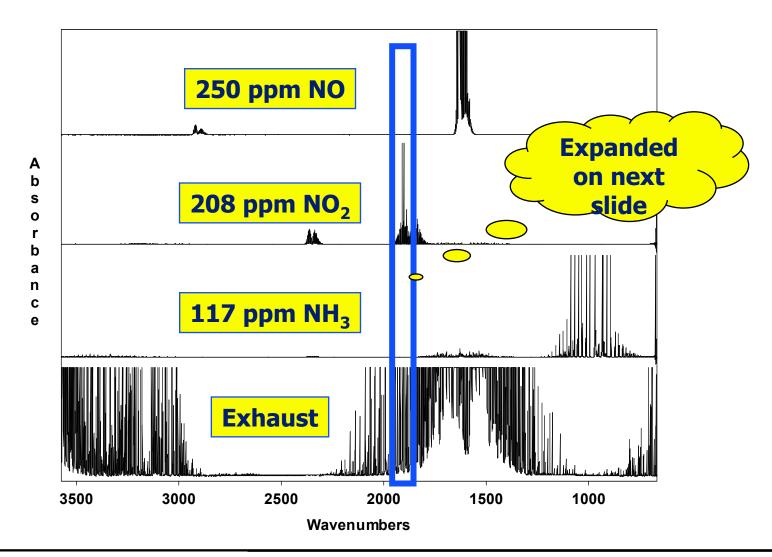
CLD w/ Glassy Carbon Converter Main Effect of NH3 on NOx Measurement

CLA NOx Response

- Regression equation from second replicate
- CLA with *Glassy Carbon* catalyst
- NOx = 269 + 1.08 NOadd + 0.982 NO2add 0.728 NH3add
- $R^2 = 0.986$
- All three coefficients are not zero at 90% confidence
- Within experimental error, NO and NO₂ slopes could be 1.0
- Large NH₃ interference

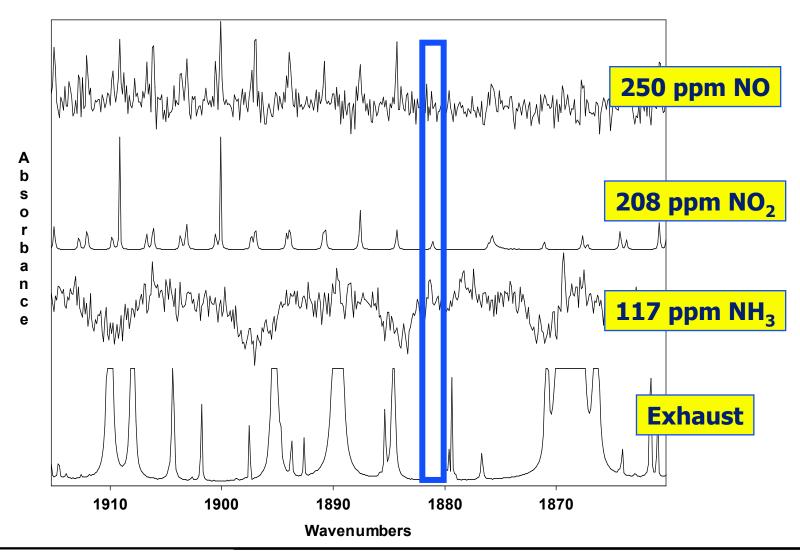
CLA Summary

- NOx measurement accuracy and repeatability when NH₃ is present is poor for the base COM3 converter.
- NOx measurement repeatability is much better with the updated glassy carbon converter, however a large NH₃ interference makes measurements inaccurate.
- CLA NOx measurements are not accurate when NH₃ is present in large concentrations.



FTIR

- Fourier Transform Infrared Spectroscopy
- Commonly used gas analysis but potential issues
 - Interference from gases not included in the analysis set.
 - Saturation
 - Excessive Interference even with gases in the analysis set

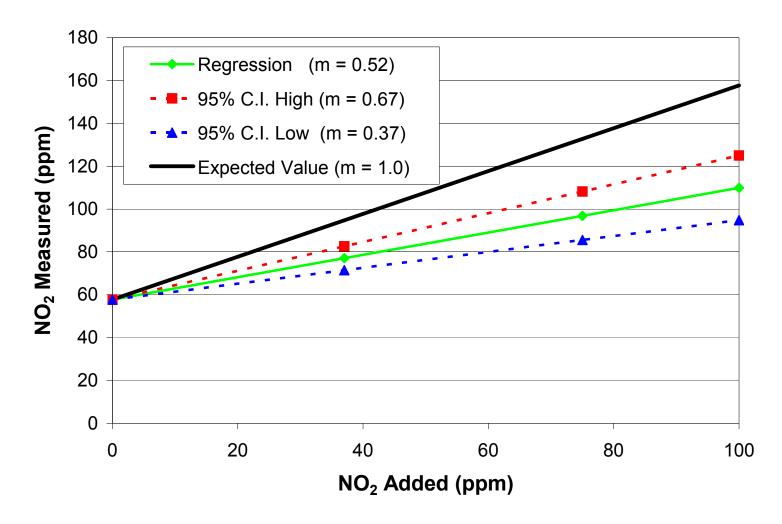


Typical Exhaust Spectrum

Expanded Scale

FTIR NO Response

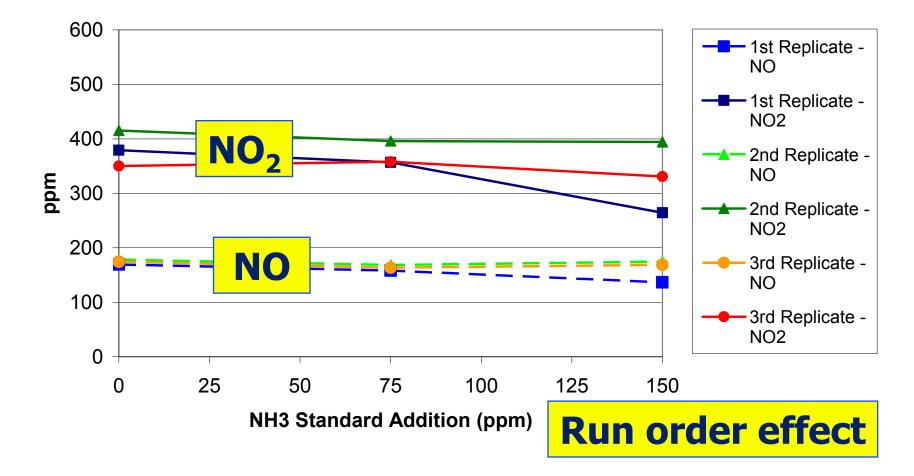
- Regression equation from second and third replicates
- FTIR
- NO = 57.7 + 0.843 NOadd + 0.0156 NO2add 0.0279 NH3add
- $R^2 = 0.943$
- NO and NH_3 coefficients are not zero at 90% confidence
- NO coefficient range includes 1; could give accurate NO
- NO₂ coefficient is *not* nonzero at 90% confidence
- No spectral saturation was present in the data



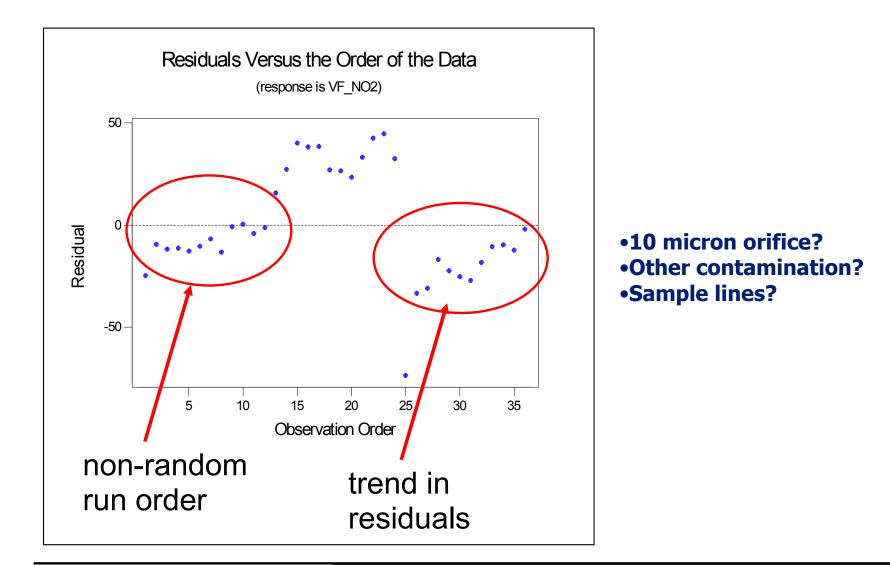
FTIR NO₂ Response

- Regression equation from second and third replicates
- FTIR
- NO₂ = 172 + 0.187 NOadd + 0.522 NO2add 0.0141 NH3add
- $R^2 = 0.839$
- NO₂ coefficient is not zero at 90% confidence
- NO2 coefficient range <u>does not</u> include 1; NO₂ readings are inaccurate
- NO and NH₃ coefficients are *not* nonzero at 90% confidence

95% Confidence Interval for Regression Coefficient (FTIR NO₂)



FTIR Summary


- NO measurements are not affected by NH₃, but *may* not match the known addition levels accurately
- NO₂ measurements are not affected by NH₃ level, and also <u>do not</u> match the known addition levels accurately
- Careful modification of the analysis method may well reduce the error in measurement
- Accurate measurement should be possible but requires careful user interaction

Mass Spectrometer Main Effect of NH3 on NOx Measurement

Run Order Effects

CIMS NO Response

- Regression equation from second replicate
- CIMS
- NO = 105 + 1.21 NOadd + 0.0143 NO2add 0.0194 NH3add
- $R^2 = 0.953$
- NO coefficient is not zero at 90% confidence
- NO coefficient range includes 1
- NO₂ and NH₃ coefficients are *not* nonzero at 90% confidence; small interferences exist

CIMS NO₂ Response

- Regression equation from second replicate
- CIMS
- NO₂ = 225 0.0682 NOadd + 1.13 NO2add 0.131 NH3add
- $R^2 = 0.992$
- NO₂ and NH₃ coefficients are not zero at 90% confidence; interferences exist
- NO₂ coefficient range includes 1
- NO coefficient is *not* nonzero at 90% confidence

CIMS Summary

- Accurate measurements require regular instrument maintenance, apparently due to ammonium nitrate formation in the system
- NO measurements are not affected by NH₃, but may not match the known addition levels accurately
- NO₂ measurements are affected by NH₃ level, and additionally may not match the known addition levels accurately
- Careful recalibration and regular cleaning of the unit may well reduce the error in measurement, but is unlikely to remove the NH₃ effect.

Estimate of Engine NOx

- From Standard Addition Test, regression gives "zero addition" as estimate of engine out NOx
- Measurements do not agree!
- Note: CLAs are "dry" where FTIR and CIMS are wet; expect 7% higher reading when water is removed

Instrument	ΝΟ	NO ₂	NOx	
CLA COM3			337	
CLA GC			269	
FTIR	58	172	230	
CIMS	105	225	330	

Experiment Summary

- Chemiluminescent analyzers do not provide accurate measurement of NOx when NH₃ is present in engine exhaust gas.
- FTIR may provide accurate measurements if analysis methods are developed to provide adequately low interference.
- Chemical ionization mass spectroscopy may provide accurate measurements, although the unit tested appears to need significant cleaning and maintenance to do so.
- No presently available measurement provides accurate and robust measurement of NO, NO₂, NOx, and NH₃ when NH₃ is present in large quantity.
- Recommend development of an NH₃ scrubber

