Project Number: LM056

Non-Rare Earth High-Performance Wrought Magnesium Alloys

Curt Lavender <u>Curt.Lavender@pnnl.gov</u> (509) 372-6770 Dongsheng Li, Jung-Pyung Choi, Vineet Joshi, Aashish Rohatgi, and Eric Nyberg

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Pacific Northwe NATIONAL LABORATOR

Project Overview

Project Timeline

- Start: 10/1/2010
- Finish: 9/30/2013

Budget

- FY11 Funding \$475K
- FY12 Funding \$550K
- FY13 Funding \$625K

2

 Cost share to provided by MENA and Magna at appropriate phases

Barriers

- Performance of low cost materials needed to achieve the performance needs
 - Conventional Mg alloys have limited energy absorption
- Higher cost of lightweight material
 - Rare earth alloying additions increase cost and are of uncertain supply
 - Must be eliminated or minimized
- Predictive modeling tools. Adequate predictive tools that will reduce the low cost
 - Conventional Mg alloy processing limits the microstructure and corresponding properties

Partners

- Magna/Cosma
- Magnesium Elektron North America
- Georgia Technology University (sub contractor)

Pacific Northwest NATIONAL LABORATORY

Presentation Outline

- **Project Overview**
- Goal and Objectives
- Relevance and Background
- Milestones
- Technical Approach
- Progress
- Summary
- Publications/Presentations

Goals and Objectives

- The Goal of this project is to reduce vehicle greenhouse gas emissions and increase vehicle efficiency by increasing the utilization of magnesium alloys.
 - The goal will be achieved by allowing the use of mass-saving magnesium alloys in structural applications requiring higher performance than that achieved with cast or continuous cast sheet materials.
- The Objectives of the project are:
 - Demonstrate that a magnesium alloy with a compressive and tensile yield strength in excess of 300MPa can absorb energy similarly to AA6061
 - Direct substitution is a 34% mass savings over aluminum
 - In some cases section thickness can raise the savings even greater
 - Using a process path optimization model demonstrate a low cost process to produce the desired microstructure at a minimum cost

Relevance and Background

- Magnesium holds promise for mass savings at OVT goals
 - Applications are limited by energy absorption of magnesium
 - Energy absorption is a function of strength and ductility
- The project is then focused on determining:
 - If a high performance magnesium alloy can meet the stringent needs of automotive energy absorption
 - If the application of novel process modeling and methods can reduce the cost to automotive needs
- If successful magnesium can be used in many previously impossible applications and achieve OVT goals

Microstructure of high performance RE containing Mg alloy

Energy Absorption Testing – Previous Tasks

During FY 11 to 12 - Similar energy absorption for AI 6061 and Mg ZK60 results in approximately 20% mass reduction

Demonstrate that the high strength non-RE Mg alloy extrusion can achieve the equivalent energy absorption as 6061 using a more cost effective process than rapid solidification and powder metallurgy. September 30, 2013 - On target at time of preparation

Technical Approach

Three Phases:

- 1. Evaluate the energy absorption capability of magnesium alloys processed by novel methods RE containing
 - Demonstrate energy absorption like AA6061
 - Assess strengthening mechanisms and build model to predict properties and processing relationships
- 2. Demonstrate energy absorption of AA6061 with non-RE alloys based on model and characterization
 - Demonstrate with prototypic component 7 mm OD crush samples
- 3. Develop and Demonstrate low cost processing approach Focus of this Year
 - "Inverse process path modeling" based on ideal microstructures
 - Laboratory demonstrations
 - Prototypic component demonstration size to be determined in discussions with Magna

Pacific Northwes NATIONAL LABORATORY

Technical Progress

Three aspects

- Process Development
 - High Shear Extrusion
- Mechanical Properties Modeling
 - Dispersion size and fraction
 - "Phi" Model
- Inverse Process Modeling
 - Intermetallic particle fracture

Process Development

Alloy selection

- Dispersion volume fraction and chemistry
 - New alloy selected binary with Si
- Also carried along ZK60A
 - Faster route to commercialization with conventional alloy
- Process Selection
 - High shear extrusion

Premise behind energy absorption improvement with improved alloy

- Impact of grain size on ductility and cys/tys
 - Can high strength be developed while retaining ductility?
- Goal is 1 to 2 micron grain size

R.S. Busk and T.E. Leontis, Trans AIME, 1950, 188, 297.

NATIONAL LABORATORY

Synthetic Microstructure – Interparticle Spacing

Effect of Volume Fraction

1%

2%

8%

Synthetic Microstructure – Particle Size

Effect of particle size

■ 1 Volume percent; 3.2, 2.3 and 1.5 micron

Grain Size and Dispersion

Assuming effective pinning (70%)

Idea of where we need to be in v/f and size

Need 6 to 8 volume fraction of 0.8 to 1.5 micron dispersions

NATIONAL LABORATORY

Which Alloying Elements?

- Galvanically favorable
 Reduce corrosion
- Intermetallic former
 - Provide pinning dispersions
- Liquidus
 - Realistic melt point for casting

Silicon as an Alloying Addition

Silicon appears to be a good candidate to validate microstructure and corrosion theory

Intermetallic former (Mg₂Si) with neutral galvanic potential

Metal	E _{corr} , V _{SCE}
Mg	-1.65
Mg ₂ Si	-1.65
Al ₆ Mn	-1.52
Al₄Mn	-1.45
Al ₈ Mn ₅	-1.25
$Mg_{17}AI_{12}(\beta)$	-1.20
Al ₈ Mn ₅ (Fe)	-1.20
β-Mn	-1.17
Al₄RE	-1.15
Al ₆ Mn(Fe)	-1.10
Al ₆ (MnFe)	-1.00
Al ₃ Fe(Mn)	-0.95
Al ₃ Fe	-0.74

Pacific Northwest NATIONAL LABORATORY

Cast Si Binary Alloys

- Mg- 2 and 7 wt % Si
- Book mold cast at 50 mm section thickness 12 cm by 36 cm
 - Cast at CANMET

Cast Microstructure Chinese Script as well as cube shaped Mg₂Si Intermetallic

High Shear Processing

How do we have fine particles and homogenously distribute them?

- High solidification rate
- High strain
- Additives MMC
- To date processes have been limited
 - Cost Effective Casting thickness
 - Strain limitations from rolling/extrusion
 - MMC's with micron-ish particle materials are difficult to make
- We selected High Shear Extrusion

Indirect Tube Extrusion with High Shear

Microstructure of Mg2Si Extrusion

Highly deformed zone with grain sizes and intermetallic sizes less than one micron. *Microstructure Goal Achieved*

Tubes Produced

- Tubes were extruded to match the 7 mm OD by 0.5 mm wall used in compression testing (energy absorption)
- Alloys Produced
 - 2 and 7 wt % Si; ZK60A and AZ31

Tubes produced from Mg2Si at 1 ft/min (left) and 12 ft/min (right)

NATIONAL LABORATORY

Energy Absorption from High Shear Extruded Tubes

- Mg with 2 wt% Si met or exceeded prior test energy absorption
 - High shear extrusion can produce desire microstructure that develops high performance properties
 - ZK60A by high shear was similar to Mg2Si (not shown for clarity)

Modeling – Two Areas

"Phi" Model – Leveraged by PNNL FSCD

- Uses a weighting factor that sums the effect of grain size, precipitation, twinning and texture.
 - The total is a multiplier to the Visco Plastic Self Consistent (VSCP) model
- Describes the relative importance of major microstructural features.
- Inverse Modeling Led by Georgia Inst. of Technology
 - Need a relationship between strain in shear process and intermetallic break up to produce fine dispersions
 - Uses matrix strength and Griffith fracture criteria to fracture particles in Mg matrix.
- Simple Questions lead to complex models!

Polycrystalline Viscoplasticity Model: φ-model

Inverse Process Modeling – Particle Fracture

Fracture of Intermetallics by traction tensors and Griffith's Theory

Traction Tensors: Jeffery, G.B., Proceedings of the Royal Society of London. Series A, 1922. 102(715) 161-179.

 $\sigma_n = f(\sigma(\beta, m, \dot{\varepsilon}), \sigma_h, R, t(x, y), \theta, \phi)$

Proudly Operated by Battelle Since 1965

Fracture of intermetallics important to high strain processing – Model to predict behavior developed

Inverse Process Modeling – Usefulness of Particle Fracture Model

- Even pure shear causes failure in mode I
- For failure in Mode II a compressive component of stress is needed. e.g. : Let's assume a state of stress for hydrostatic compressionshear:

$$\sigma_{ij} = \left[\begin{array}{cc} -\sigma & \tau \\ \tau & -\sigma \end{array} \right] \rightarrow$$

Pricipal Stresses:

$$\sigma_1 = \tau - \sigma$$
$$\sigma_2 = -\tau - \sigma$$

Pacific Northwest NATIONAL LABORATORY

- Magnesium Electron North America has provided master alloys and alloys for processing
 - CANMET has also provided castings
- Magna/Cosma Engineering has provided property goals and extrusion design
- Georgia Tech has started characterization efforts to provide precipitate structure and composition
 - Leveraging DOE/BES in mechanical strength models
- Technology transfer will start in more detail this FY due to the nature of the project phases.

Pacific

Future Work

Increase the size scale of high shear extrusion to produce relevant automotive geometries

- Mg2Si and ZK60A will be pursued.
- Develop extrusion model with capability to predict the evolution of microstructure and mechanical properties with different processing parameters.
 - More scope than originally expected high shear modeling needs more development.
 - GT's partical fracture model will be implemented into the smooth particle hydrodynamics model to model extrusion.
- Apply microstructure based FEM to predict mechanical responding with reconstructed statistical stable representative volume element
 - Influence of twinning will be integrated...impact from high performance Mg.
 - Accomplished by providing properties and microstructural data to the VPSC enhanced by the Phi model.

Summary

- A series of magnesium alloys were extruded using high shear to produce high performance tubes with fine grain size dispersions
 - Grain sizes appear to be less than 5 μm
 - Dispersions less than 2 microns
- Tubes extruded with high shear exhibit energy absorption like that of aluminum
 - Mg2Si and ZK60A exhibited energy absorption like 6061
- Microstructural modeling has been initiated to help understand the behavior and predict energy absorption
 - Grain size, precipitation, twinning and texture as it impacts stress strain has been implemented in the VPSC material model
- A model to predict the "high shear-extrusion" state of stress needed to facture particles has been developed

