

2012 DOE Vehicle Technologies Program Review Presentation

Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

Matthew Barth

University of California Riverside May 18, 2012 Project ID

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

• Timeline

- Start 10/1/2011
- End 9/30/2014
- 10% complete

Budget

- Total project funding
 - DOE \$1,210,235
 - Contractor \$665,472
- Funding received in FY11
 - \$0
- Funding for FY12
 - \$556,267

• Barriers

- Barriers addressed
 - Public acceptance
 - Safety concern
- Partners
 - ESRI
 - NAVTEQ
 - Beat the Traffic
 - Earthrise Technology
 - Automatik
 - Riverside Transit Agency
 - Caltrans
 - U. of California Berkeley

Project Objective

- To design, develop, and demonstrate a next-generation driving feedback system with four advanced modules:
 - Eco-Routing module
 - Eco-Driving Feedback module
 - Eco-Score and Eco-Rank module
 - Algorithm Updating module
- Success criteria:
 - Improve fuel efficiency of the fleet of passenger cars and commercial vehicles by at least 2%
 - Comply with federal safety and emissions regulations
 - Deployable across existing vehicle fleets

Milestones for FY12

Month/Year	Milestone
Dec 2011	Complete an upgrade of Dynamic Roadway Network (DynaNet) database with 3D digital road map and real- time traffic data feed
Jul 2012	Complete the design of eco-driving feedback user interfaces and algorithms
Sep 2012	Complete Eco-Routing Navigation module that incorporates intersection delays in route calculations

Approach – Vision

Approach – Eco-Routing

- Create routes and schedules for day-to-day fleet operation that are optimized for fleet average fuel consumption
- Use real-time traffic data in route calculations
- Account for intersection delays and road topology when finding optimal routes

Approach – Eco-Driving Feedback

- Simple user interfaces
- Supplement visual feedback with auditory feedback to reduce distracted driving and improve effectiveness
- Convey monetary messages in addition to fuel economy messages

Approach – Eco-Score and Eco-Rank

- Track vehicles and monitor driving behavior, vehicle performance, and fuel consumption in real-time
- Periodically assess driving behavior of drivers and provide recommendations for improvements
- Provide platform for performance comparison against oneself over time as well as against other drivers

Approach – Algorithm Updating

• Continuously update Eco-Routing algorithms based on real-world vehicle performance and fuel consumption

Approach – System Testing

• Test individual modules and the integrated system in testbed vehicle before field operational test in fleets

Technical Accomplishments

- Eco-Routing module
 - Upgraded DynaNet with 3D street map and new traffic data
 - Developing methods for estimating intersection delays from smartphone-based GPS data with 20-second interval

Estimating Intersection Delays

Direct path connecting 20second GPS points

Reconstructed path along digital road network

Actual path based on 1second GPS points

Example log for path segment at intersection 1

	Total distance	Base Speed	Expected Time	
To Node	Traveled (m)	Limit (mph)	(s)	
1378569	152.50	20	17.06	
1378570	17.61	20	1.97	
End (mid link)	82.96	28	6.63	

Estimated delay at intersection 1 = 14.30 seconds

VS.

Collaborations (1)

- University of California Riverside (university)
 - Prime contractor assuming leadership role
 - Conduct system research & development
 - Lead system testing & evaluation, reporting
- ESRI (industry)
 - Provide route planning & scheduling and GIS software packages
 - Provide technical support in the integration of its software products with other system components
- NAVTEQ (industry)
 - Provide 3D digital map and real-time & historical traffic data
 - Provide technical support in the integration of its products with other system components

Collaborations (2)

- Beat the Traffic (small-business enterprise)
 - Provide GPS data from its smartphones app users
 - Develop methods to detect and model intersection delays on arterial and local roads using these GPS data
- Earthrise Technology (small-business enterprise)
 - Provide vehicle on-board diagnostics and telematics devices
 - Provide software development and technical support services related to its devices
- Automatiks (small-business enterprise)
 - Provide system development, configuration, and installation of the in-vehicle device and its wireless connectivity with the system server

Collaborations (3)

- Riverside Transit Agency (local government)
 - Allow a subset of its paratransit fleet to be equipped with the system technology
 - Provide staff support during the field operation test of the system
- California Department of Transportation (state government)
 - Allow selected passenger cars from its extensive vehicle fleet to be equipped with the system
 - Provide staff support during the field operation test of the system
- University of California Berkeley (university)
 - Provide input into the design of the system through a series of expert interviews
 - Evaluate drivers' perception towards the system through beforeand-after surveys

Proposed Future Work (FY12)

- Eco-Routing Module
 - Calibrate Energy Operational Parameter Set (EOPS) for vehicles in the test fleets
 - Integrate EOPS with route planning/scheduling software
 - Perform system module testing
- Eco-Driving Feedback Module
 - Design types, properties, and media of feedback
 - Design feedback algorithms
 - Implement Eco-Driving feedback software
 - Integrate the software with OBD firmware
 - Perform system module testing

Proposed Future Work (FY13)

- Eco-Score and Eco-Rank Module
 - Design Eco-Score and Eco-Rank calculation algorithms
 - Design module's user interfaces
 - Implement Eco-Score and Eco-Rank module software
 - Perform system module testing
- Algorithm Updating Module
 - Design algorithm updating methodologies
 - Design module's user interfaces
 - Implement algorithm updating module software
 - Perform system module testing
- System Integration
 - Set up system server and communication links
 - Perform full system testing

Summary

- The proposed driver feedback system are designed to improve fuel efficiency of vehicles in multiple processes of trip-making, from planning to routing to driving.
- The research team possesses strong collaborations between academic institutions, corporations, smallbusiness enterprises, and state and local governments.
- The research team is well positioned for work planned next year.

Technical Back-Up Slides

19

Dynamic Roadway Network (DynaNet)

Energy Operational Parameter Set (EOPS)

$$\ln(f_k) = \beta_0 + \beta_1 v_k + \beta_2 v_k^2 + \beta_3 v_k^3 + \beta_4 v_k^4 + \beta_5 g_k$$

	Coefficient	Standard Error	t Stat	<i>p</i> -value
β_0	6.804318E+00	5.32E-02	128.0	0
β_1	-1.402186E-01	7.32E-03	-19.2	2.07E-78
β_2	3.921384E-03	3.14E-04	12.5	3.42E-35
β ₃	-5.197728E-05	5.15E-06	-10.1	1.15E-23
β_4	2.573800E-07	2.85E-08	9.0	2.74E-19
β_5	1.372520E-01	8.65E-04	158.7	0