

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

New High Power Li₂MTi₆O₁₄ Anode Material

D. Dambournet, I. Belharouak, and K. Amine

Argonne National Laboratory May 19th, 2009

Project ID : esp_21_amine

Overview

Timeline

Start - October 1st, 2008.
 Finish - September 30, 2009.
 40%

Barriers

- Barriers addressed
 - Safety of the battery.
 - power density of the battery.
 - Cycle & calendar life span of the battery.

Budget

- Total project funding
 - DOE share : 200K

Partners

- Interactions/ collaborations: D. Dambournet, I. Belharouak
- Project lead: Khalil Amine

Objectives

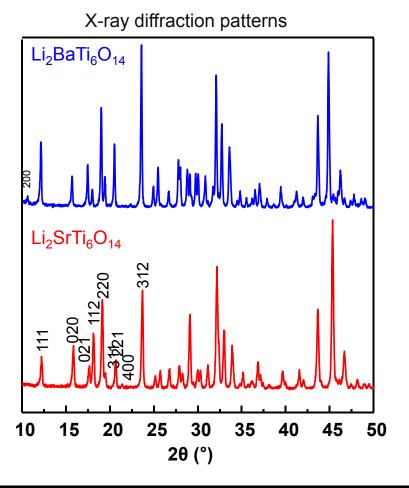
- Develop new anode materials that provide very high power capability and outstanding safety.
 - Investigate the applicability of Li₂MTi₆O₁₄ (M= Sr, Ba) as anode for high power Li-ion batteries.
 - Explore ways for preparing pure and nanosized
 Li₂MTi₆O₁₄ with full capacity and very high power.
 - Investigate the cycle, calendar life and safety of the cell based on this new anode

Milestones

Month/Year	Milestone or Go/No-Go Decision
May-09	 Develop of a new synthetic method to prepare pure and nano- sized Li2MTi6O14 anode materials. Conduct structural and electrochemical characterizations. Evaluate of this anode with advanced cathode materials.
Sept-09	 Improve the capacity and rate performance through carbon coating and/or high energy ball milling. Investigate of new phases in the Li₂O-MO-TiO₂ ternary diagram.
Sept-2010	- Explore a process to get a suitable morphology with micron size secondary particles and dense nano-sized primary particles to obtain full capacity of Li2MTi6O14 and good rate capability.

Approach

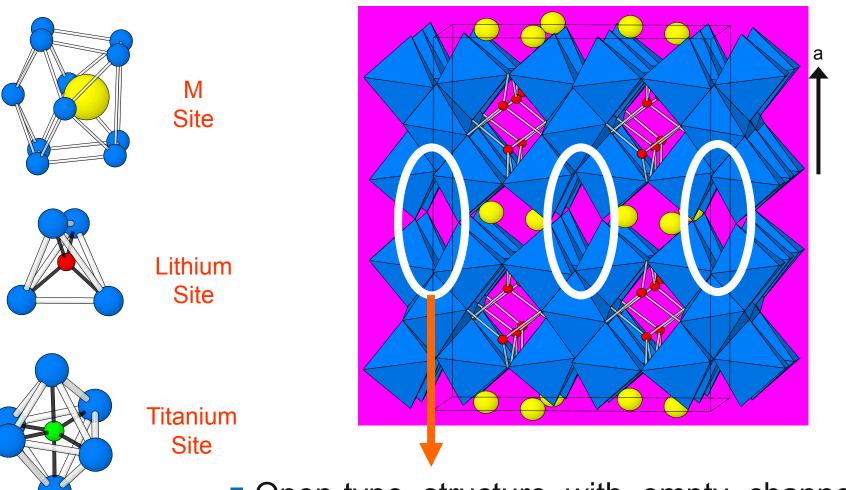
- Develop a synthesis route to prepare nano-sized Li₂MTi₆O₁₄ anode materials to improve rate capability.
- Investigate the effect of high oxidation state dopant to increase the conductivity and enable the power capability of the material.
- Explore a new synthesis process to get a suitable morphology with micron size secondary particles and dense nano-sized primary particles to obtain full capacity of Li₂MTi₆O₁₄ and good rate capability.
- Investigate the effect of coating Li₂MTi₆O₁₄ with carbon conductive agent to increase overall material conductivity and improve the rate capability.


Advantage of Li₂MTi₆O₁₄ as Anode for Safe and High Power Battery for HEV Applications

- Li₂MTi₆O₁₄ material has available space and can accommodate lithium atoms within its 3D-structure.
- $Li_2MTi_6O_{14}$ is a high voltage anode material (1~1.5V):
 - Doesn't require SEI (good for safety and long life)
 - No significant volume and structural change (good for stable cycling).
 - *High ionic conductors materials (good for rate capability)*
- Li₂MTi₆O₁₄ enables very long cycle and calendar life and significantly improves the safety of the battery.
- $Li_2MTi_6O_{14}$ provides lower resistance at the micron scale particle than the established $Li_4Ti_5O_{12}$ used by the industry as anode for HEV's.
- $Li_2MTi_6O_{14}$ provides higher capacity (180mAh/g) than the established $Li_4Ti_5O_{12}$ (150mAh/g)

Conventional Materials Preparation

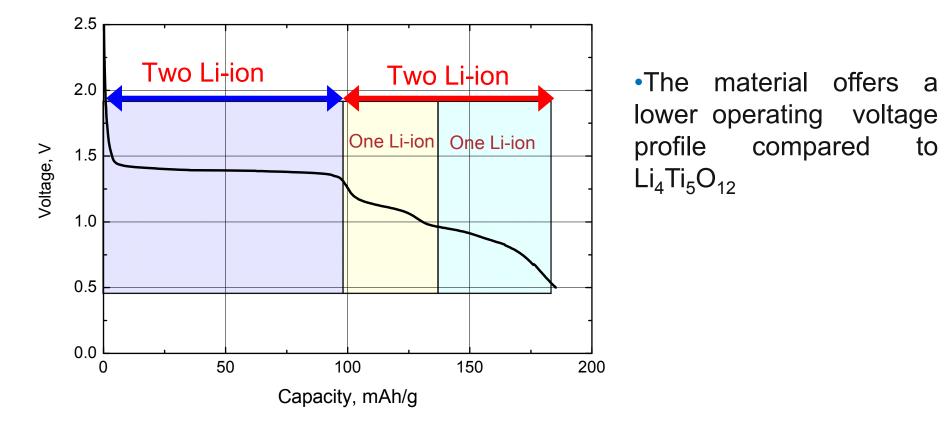
Li₂MTi₆O₁₄ (M=Ba, Sr) can be prepared by solid state reaction: Li₂CO₃ + MCO₃ + 6 TiO₂ → MLi₂Ti₆O₁₄ + 2 CO₂¹ (T=1000°C)


Symmetry: orthorhombic Space group: Cmca Unit cell parameters:

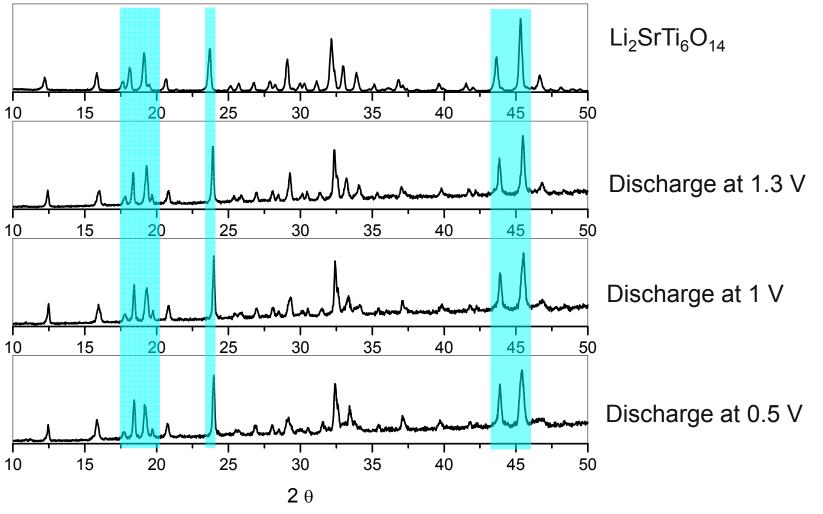
Li ₂ BaTi ₆ O ₁₄	Li ₂ SrTi ₆ O ₁₄
a=16.570 Å	a=16.566 Å
b=11.150 Å	b=11.148 Å
c=11.458 Å	c=11.468 Å

Li₂BaTi₆O₁₄ and Li₂SrTi₆O₁₄ are isostructural

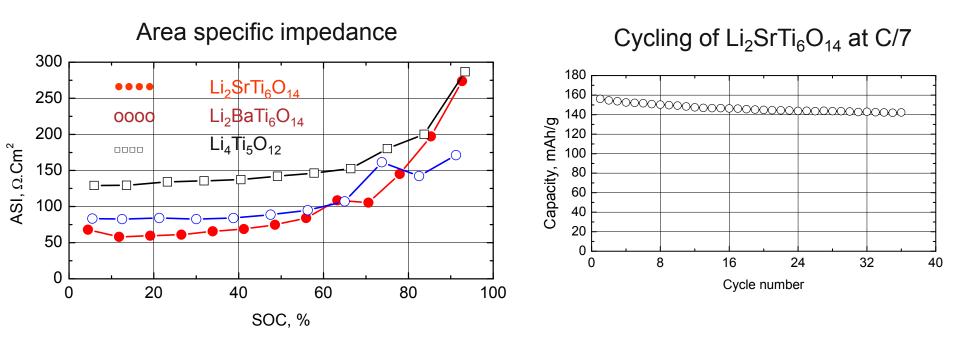
Structural Description of Li₂MTi₆O₁₄


Open-type structure with empty channels suitable for lithium insertion

Electrochemical Properties

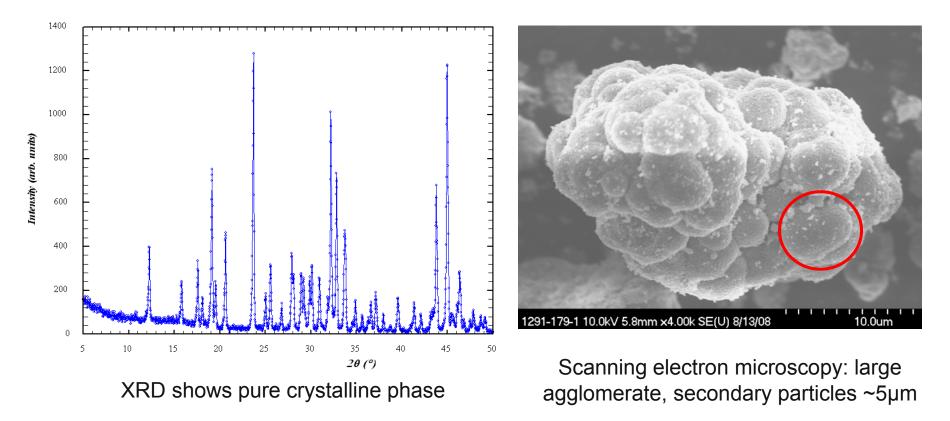

Theoretically, Li₂MTi₆O₁₄ can provide around 250 mAh/g (based on Ti⁴⁺/Ti³⁺)

Experimentally, $Li_2MTi_6O_{14}$ can provide around 180 mAh/g based on: MLi_2Ti_6O_{14} + 4 Li^+ + 4 $\bar{e} \simeq Li_6MTi_6O_{14}$ (~180mAh/g)

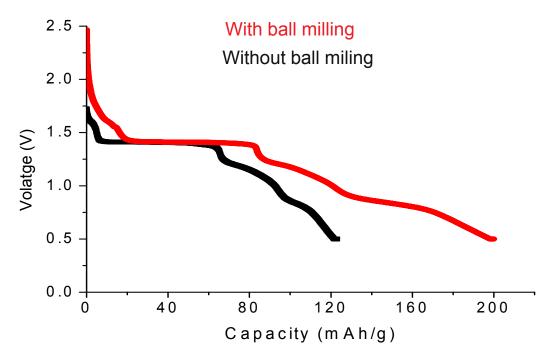

Stability Upon Lithium Insertion

Li₂MTi₆O₁₄ shows outstanding structural stability upon discharge

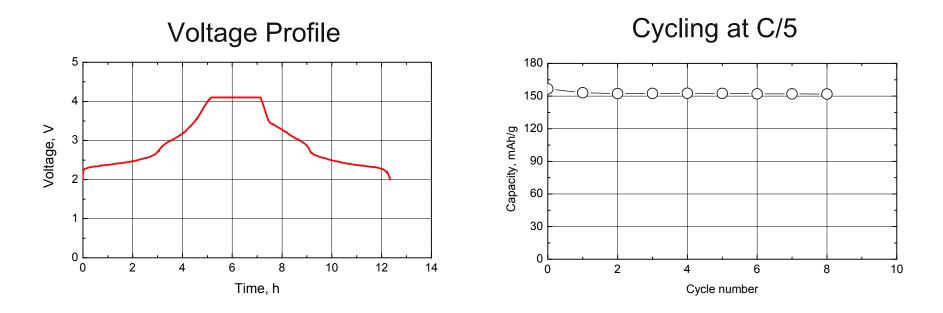
Stability Upon Lithium Insertion



Li₂MTi₆O₁₄ shows lowers area specific impedances compared to Li₄Ti₅O₁₂, provides 160 mAh/g, and cycles fairly well.


Sol-Gel Preparation Route for Li₂MTi₆O₁₄

The aim is to prepare nanosized ${\rm Li_2MTi_6O_{14}}$ to improve the capacity and rate capability


Electrochemical Properties of the Material Prepared by Sol-Gel

- Material prepared by sol-gel synthesis shows low capacity due to large agglomerates.
- Ball milling significantly improves the capacity from 120 to 200 mAh/g.
- Average voltage of the material is 1V, can provide 3.2V system with LiMn₂O₄ spinel.

Performance of Li_{1.1}(Ni_{1/3}Co_{1/3}Mn_{1/3})_{0.9}O₂/Li₂SrTi₆O₁₄ Battery

Preliminary cycling data of Li_{1.1}(Ni_{1/3}Co_{1/3}Mn_{1/3})_{0.9}O₂/Li₂SrTi₆O₁₄ provides an overage voltage of 3V with good preliminary cycling at c/5

Summary

Li₂MTi₆O₁₄ is a promising safe anode that provides a reasonable capacity and a suitable voltage profile for HEVs.

Li₂MTi₆O₁₄ possesses a 3D-dimentional structure where lithium ions can be inserted due to its high ionic conductivity.

A sol-gel method has been found to provide high purity $Li_2MTi_6O_{14}$ materials using low temperature and duration time.

Li₂MTi₆O₁₄ has lower area specific impedance than $Li_4Ti_5O_{12}$, so high rate capability could be enabled if a nanophased material can be prepared.

ball-milling Li₂MTi₆O₁₄ has shown to improve the capacity of the material.

Li₂SrTi₆O₁₄ provide an average voltage of 1V lower than the 1.5 flat voltage in Li₄Ti₅O₁₂ and can lead to high energy density than Li₄Ti₅O₁₂

Future works

Improve the capacity and rate performance through high energy ball milling of the particles.

Investigate the effect of high oxidation state dopant to increase the conductivity of the material and enable the power capability of the material.

Explore a new synthesis process to get a suitable morphology with micron size secondary particles and dense nanosized primary particles to obtain full capacity of Li₂MTi₆O₁₄ and good rate capability.

■ Investigate the effect of coating Li₂MTi₆O₁₄ with carbon conductive agent to increase overall material conductivity and improve the rate capability.

