New High-Energy Nanofiber Anode Materials

Xiangwu Zhang, Peter Fedkiw, Saad Khan, and Alex Huang North Carolina State University, Raleigh, NC

Subcontractor:

Jiang Fan

American Lithium Energy Corp, San Marcos, CA

June 8th, 2010

Project ID # ES010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

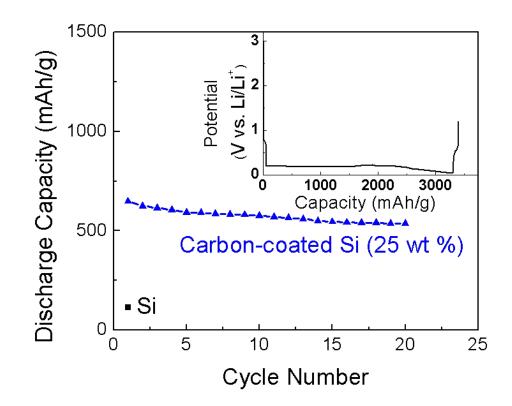
Overview

Timeline	Barriers Addressed
• Project start date: 09/16/2009	- Capacity
• Project end date: 08/15/2012	- Cycle Life
• Percent complete: 20%	- Cost
 Budget Total project funding DOE share: \$1,349,752 Contractor share: \$1,350,699 Funding received in FY09 \$452,376 Funding for FY10 \$442,054 	Partners • American Lithium Energy Corp • Jiang Fan

Objective

- Overall Objective
 - Use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously have high energy density, reduced cost, and improved abuse tolerance

FY09 Objectives


- <u>Anodes</u>: Fabricate nanofiber anodes and understand how to control their structure and performance
- <u>Coin cells</u>: Assemble nanofiber anodes into laboratory-scale coin cells, achieving initial specific capacities of 650 mAh/g and ~50 full charge/discharge cycles
- <u>18650 cells</u>: Initiate the assembling of 18650 cells using nanofiber anodes

Milestones

Month/Year	Milestone or Go/No-Go Decision
August-10	 Establish guidelines for controlling the anode performance by selectively adjusting the processing and structures of the nanofiber anodes Assemble, cycle, and evaluate laboratory-scale coin cells Determine baseline performance of anodes in 18650 cells Go/No-Go Decision: Achieve initial specific capacities of 650 mAh/g and ~50 full charge/discharge cycles for nanofiber anodes in laboratory scale <u>coin cells</u>
August-11	 Fabricate nanofiber anodes that have improved performance Assemble, cycle, and evaluate 18650 cells <u>Go/No-Go Decision</u>: Achieve capacity (at least twice the specific capacity of graphite) and cycle life (750 cycles of ~70% state-of-charge swing with less than 20% capacity fade) for nanofiber anodes in <u>18650 cells</u>
August-12	 Fabricate and deliver nanofiber anodes with specific capacities greater than 1200 mAh/g Fabricate and deliver 18650 cells <u>Target:</u> Deliver 18650 cells, in which nanofiber anodes have specific capacities greater than 1200 mAh/g, with cell cycle life longer than 5000 cycles (~70% state-of-charge swing with less than 20% capacity fade)

Background

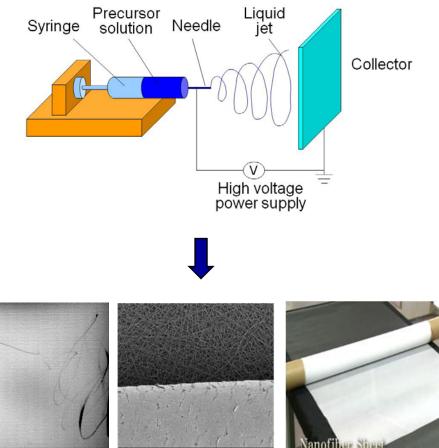
Si/C Anodes

PVC-based carbon-coated Si composite anode made by ball-milling.

inset shows The the first charge-discharge curve of a typical Si anode.

- To achieve high capacity and long cycle life simultaneously, a new processing technique must be developed to coat Si with a uniform carbon layer * PVC: polyvinyl chloride
 - 5

Our Approach

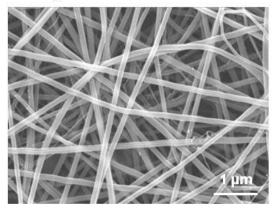

Barriers

- Capacity
- Cycle Life
- Cost

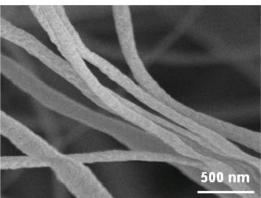
Electrospun Si/C Nanofibers

• The nanofiber structure will allow the anode to withstand repeated cycles of expansion and contraction

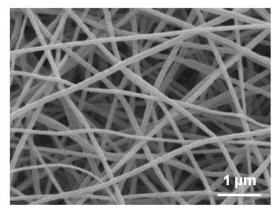
Approach - Electrospinning

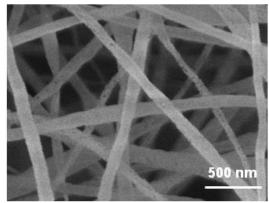

- Human hair with electrospun nanofibers in the background
- vanofiber She
 - www.mecc.co.jp

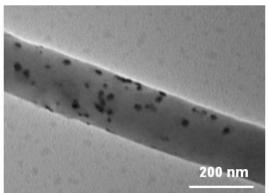
- Electrospinning is a simple, yet versatile technique that can produce large quantities of nanofibers with controllable structures
- Parameters affecting electrospinning:
 - Solution viscosity
 - Solution conductivity
 - Solution surface tension
 - Applied voltage
 - Needle tip-collector distance
 - etc. 0


Approach

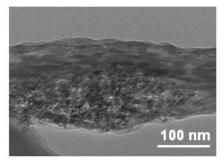
Nanofibers of Various Materials

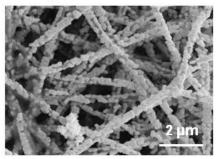

Polymer


Ceramic


Carbon

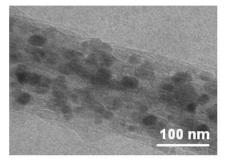
Metal

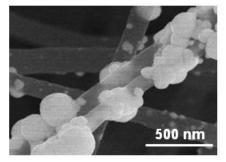

Composite

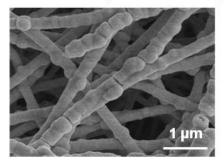

Approach

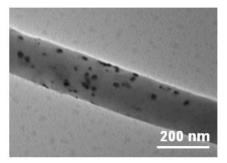
Nanofibers with Various Structures

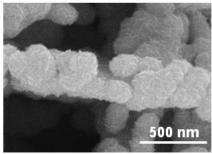

Aggregates

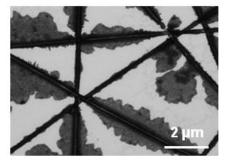

Large Particles


Thin-Film Coating


Particle-in-Fiber


Smooth Particles


Pea-Shape Coating


Particle-on-Fiber

Rough Particles

Plates

Approach

Industry-Scale Electrospinning Machines

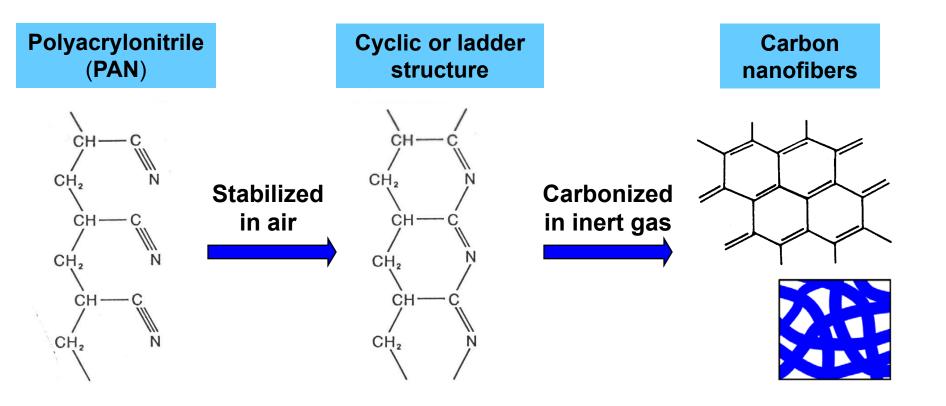
Elmarco: NanospiderTM

MECC: EDEN

Yflow: eSpinning Unit 1.2.S-300

ANSTCO: eSpinner

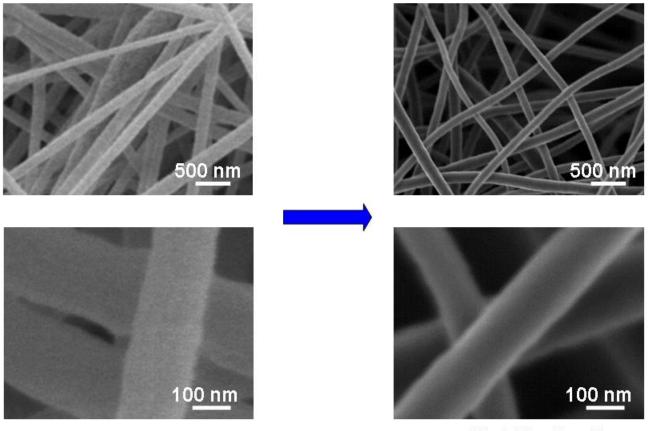
Fuence: High-Speed Production Unit


Kato Tech: Nanofiber Electrospinning Unit

Technical Accomplishments and Progress

- Anodes
- Coin cells
- 18650 cells

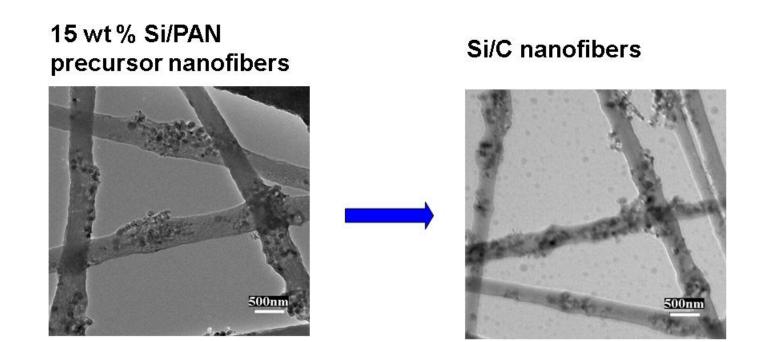
Preparation of Carbon Nanofibers


- Widely used as a precursor for carbon fibers
- Desirable for electrospinning

Technical Accomplishments – Anodes

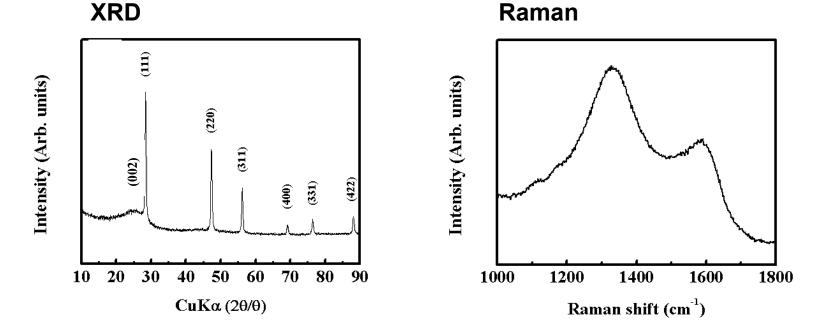
Carbon Nanofibers

Carbon Nanofibers


PAN Precursor Nanofibers

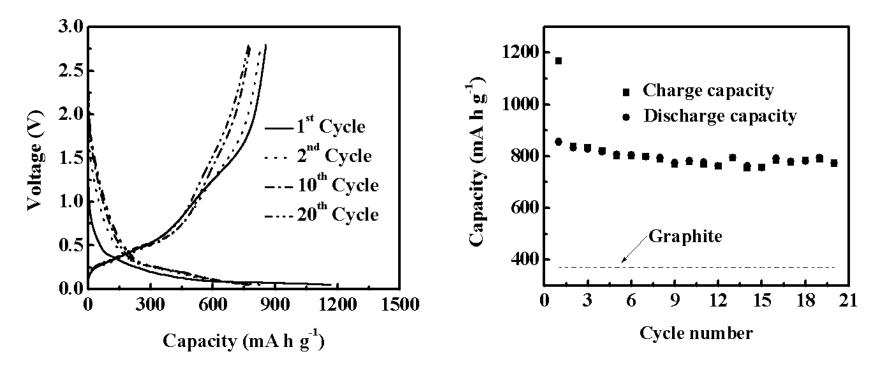
Stabilization Temperature: 280 °C Carbonization Temperature: 700 °C

Fiber diameter decreases after carbonization

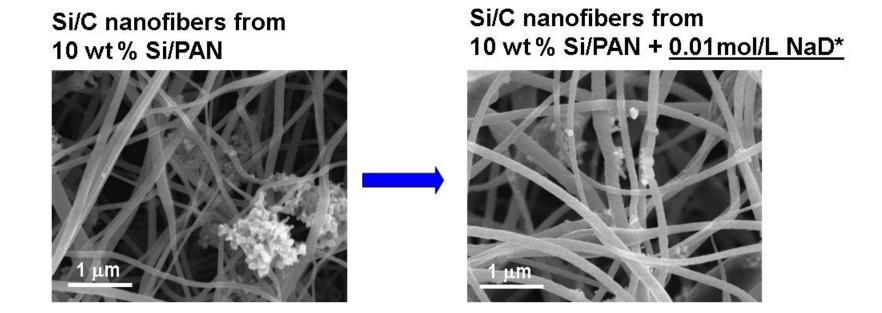

Preparation of Si/C Nanofibers

 Si/C nanofibers were prepared by the electrospinning and carbonization of Si/PAN precursor nanofibers

Structure of Si/C Nanofibers

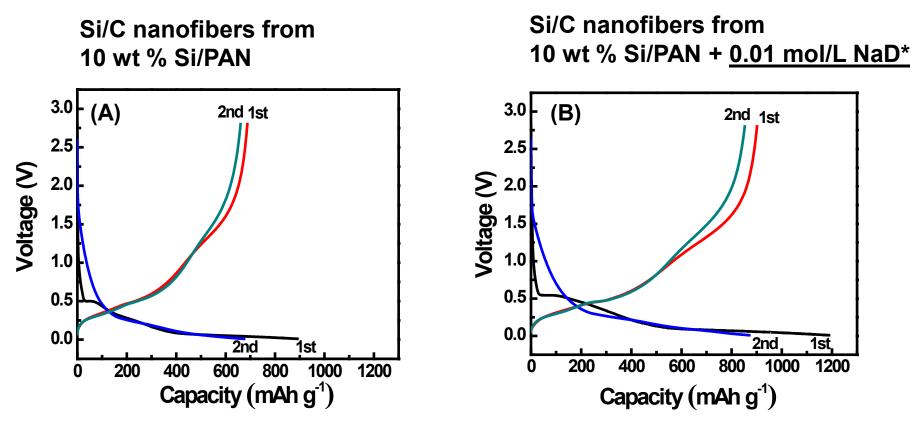

Si/C nanofibers produced from 15 wt % Si/PAN precursor

- XRD pattern indicates crystalline Si nanoparticles exist in a facecentered cubic structure
- Ramen spectrum shows the predominantly amorphous/disordered nature of the carbon matrix 15

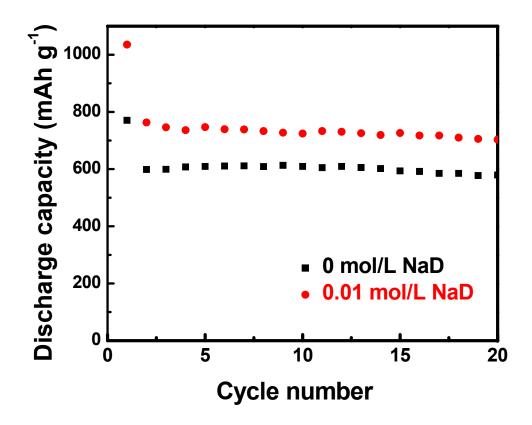

Charge/Discharge Performance

2032 <u>coin-type half cells</u> Anode: Si/C nanofibers from 15 wt % Si/PAN Electrolyte: 1 M LiPF₆ in EC/EMC Current density: 100 mA g⁻¹

 Year 1 Go/No-Go Decision: initial specific capacities of 650 mAh/g and ~50 full charge/discharge cycles in lab-scale coin cells.


- Establish guidelines for controlling the anode performance by selectively adjusting the processing and structures of the nanofiber anodes:
 - Si content and <u>dispersion</u>*
 - Solution properties: viscosity, surface tension, and conductivity
 - Spinning conditions: voltage, flow rate, and needle-collector distance
 - Carbonization conditions: temperature, time, and heating rate

 The addition of 0.01 mol/L NaD surfactant improves the Si dispersion

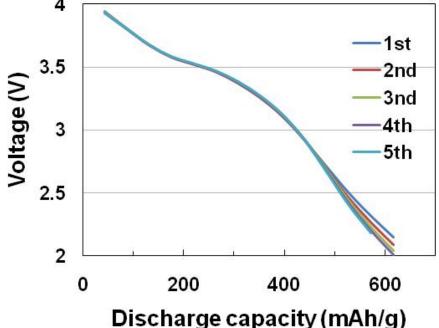

* NaD: Sodium dodecanoate, CH₃(CH₂)₁₀COONa

Current density: 100 mA g⁻¹

 The addition of 0.01 mol/L NaD surfactant improves the charge and discharge capacities

Anode: Si/C nanofibers from 10 wt % Si/PAN Current density: 100 mA g⁻¹

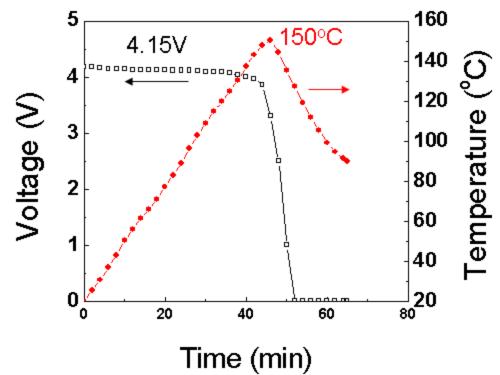
The cycling tests are still in progress


Assembling of 18650 Cells Using Nanofiber Anodes

Year 1 Target: Determine baseline performance of anodes in 18650 cells

Charge/Discharge Performance

Anode: Si/C nanofibers from 12 wt % Si/PAN nanofibers Electrolyte: LiPF₆ in EC/DMC/EMC Cathode: LiNiCoAlO₂ Current: 0.2 A 4


 Decent processing condition for Si/C nanofiber anodes has been identified

* capacity was calculated on Si/C nanofiber anodes

22

Stability of Si/C Nanofiber Anodes

Anode: Si/C nanofibers from 12 wt % Si/PAN nanofibers Electrolyte: LiPF₆ in EC/DMC/EMC Cathode: LiNiCoAlO₂

 Si/C nanofiber anodes are stable in contact with electrolyte upto 150 °C Collaboration

Collaboration

• Partner:

American Lithium Energy Corp - The assembling and testing of 18650 cells

• Technology Transfer:

- Tec-Cel Inc: A start-up company was founded

Future Work

Proposed Future Work

- Establish guidelines for controlling the anode performance by selectively adjusting the processing and structures of the nanofiber anodes:
 - Si content and dispersion
 - Solution properties: viscosity, surface tension, and conductivity
 - Spinning conditions: voltage, flow rate, and needle-collector distance
 - Carbonization conditions: temperature, time, and heating rate

FY10:

- Anodes: Fabricate nanofiber anodes that have improved performance
- <u>Coin cells:</u> Fabricate and evaluate coins cells with improved nanofiber anodes
- <u>18650 cells</u>: demonstrate practical and useful cycle life (750 cycles of ~70% state-of-charge swing with less than 20% capacity fade) with at least twice the specific capacity of graphite

Summary

- Anodes: Si/C nanofiber anodes have been prepared using the electrospinning technique
- Coin cells: Si/C nanofiber anodes have demonstrated a capacity of about 800 mAh/g, which exceeds the Year 1 Target of 650 mAh/g
- <u>18650 cells</u>: Si/C nanofibers have been incorporated into 18650 cells