Nanostructured Materials as Anodes

M. Stanley Whittingham State University of New York at Binghamton June 7th, 2010

Project ID # ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information

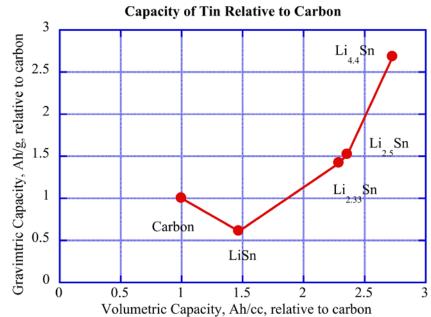
Overview

Timeline

- Project start date: 06-01-2007
- Project end date: 12-31-2010
- Percent complete: Continuing

Budget

- Total project funding
 - DOE share: 100% \$
 - Contractor share: Personnel
- Funding received
 - FY09: 125k\$
 - FY10: 141k\$
- Funding requested
 - FY11: 172k\$


Barriers

- Barriers addressed
 - Cost
 - Safety, and
 - Volumetric capacity limitations of lithium-ion batteries

Partners

- SUNY Stony Brook, ANL,
- Primet, and other companies

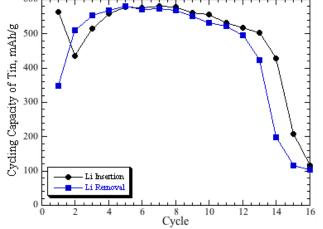
- To replace the presently used carbon anodes
 - with safer materials that will be compatible with lower cost manganese oxide and phosphate cathodes and the associated electrolyte.
 - with materials having higher volumetric energy densities, twice carbon
 ³ Capacity of Tin Relative to Carbon
 - 1.6 Ah/cc
 - Gravimetric ≥ 0.5 Ah/g

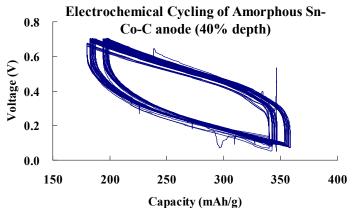
- Determine the limitations, besides cost, of the Sn-Co-C a) nanostructured anode. Complete
 - March 2010 Nogo for high rate charging and cost
 - March 2010 Go on maintenance of capacity on cycling
- Explore nano-size tin/silicon alloys and metal oxides to **b**) identify their cycling characteristics.
 - Continuing
- Explore cobalt-free alloys to identify lithium active stable **c**) phases.
 - Continuing
- Identify the structural and surface changes of tin d) containing anodes during cycling working collaboratively with LBNL – R. Kostecki.

Approach to Replacing Carbon Anode

- Explore, synthesize, characterize and develop inexpensive materials, that
 - Have a potential around 500 mV above pure Li
 - Have at least double the volumetric capacity of carbon
 - Have a higher gravimetric capacity than carbon
- Build on know-how generated from Co-Sn anode
 - Emphasize nanostructures
 - Tin nanostructures
 - Devise novel synthetic approaches
 - Compare with silicon based nanostructures
 - Keep aware of oxide-based anodes
 - We showed that Mn_3O_4 cycles well

Technical Accomplishments: Barriers being Addressed

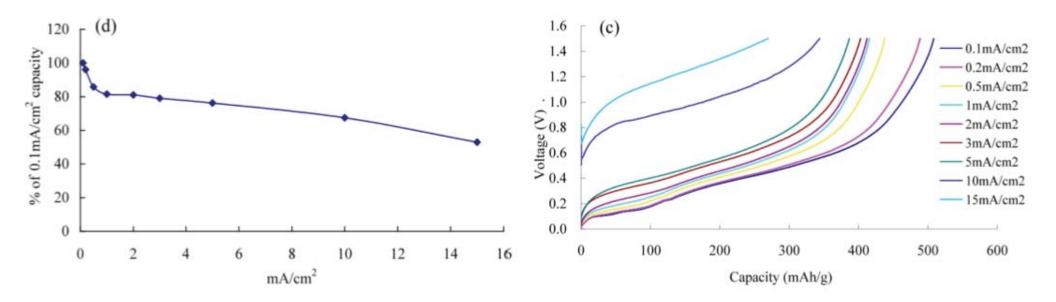

Stan Whittingham SUNY at Binghamton


- Replace the **low capacity** carbon anode presently used
 - Increase volumetric capacity to 1.5 Ah/cc
 - Double the low volumetric capacity of carbon
 - Significantly increases energy density of battery
- Reduce the **cost** of the anode
 - Use low cost materials, and low cost synthetic approaches
- Increase the **safety** relative to carbon
 - Higher voltage vs lithium, giving safety margin
 - Tin releases less energy than silicon on combustion
 - $\Box \Delta G$ for SnO₂ formation half that of SiO₂
 - Sn and Si both release much less energy on combustion than carbon per mole of lithium stored

Milestone: Determine the Limitations of the Sn Nanostructured Anode

Stan Whittingham SUNY at Binghamton

- Crystalline tin foil
 - Capacity fades even for low-depth cycling
- Nanotin shows some excellent behavior
 - Reported May 2009
 - Capacity maintained at all depths of discharge
 - Crystallizes on heating to around 300°C
 - Capacity lost
- Questions raised last year
 - Safety relative to carbon anode
 - Low temperature operation
 - Not studied, as Army Research Laboratory determined to be safe, operates well at low temp. and suitable for military use
 - What is rate capability?

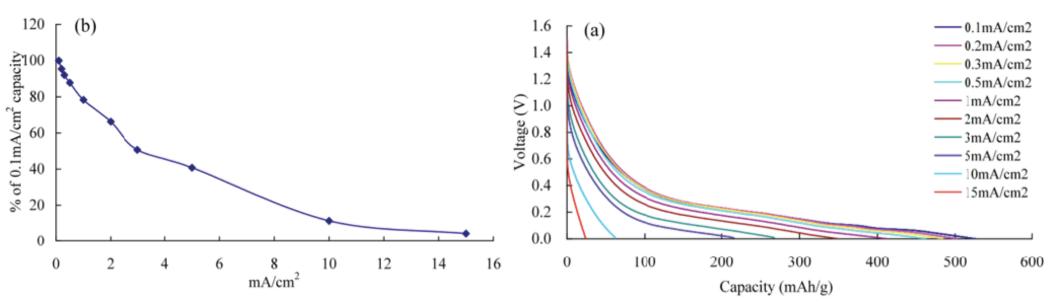


Amorphous Tin shows Excellent Lithium Release Rate

Stan Whittingham SUNY at Binghamton

Nano-amorphous tin shows:

- Very high lithium release rate
 - Still 60% of capacity at 15 mA/cm²
- Allows high discharge rates when used as anode



Amorphous Tin shows Limited Lithium Insertion Rate

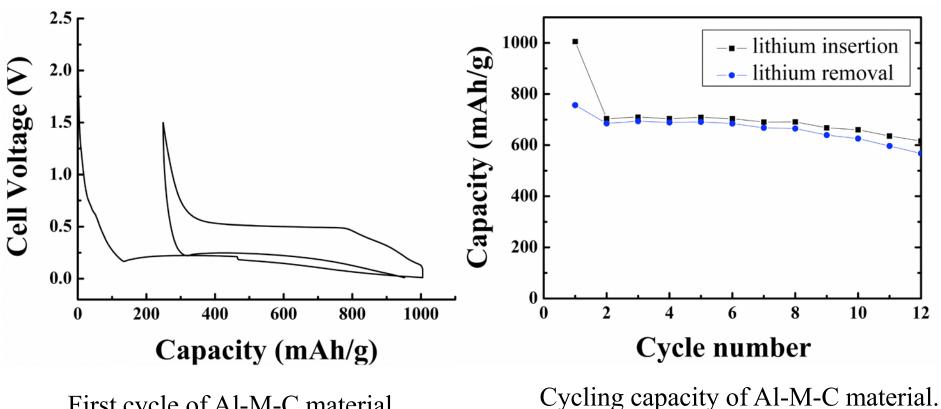
Stan Whittingham SUNY at Binghamton

Nano-amorphous tin shows:

- Low lithium insertion rate
 - Only 50% of capacity at 3 mA/cm²
- Results in low charging rates when used as anode

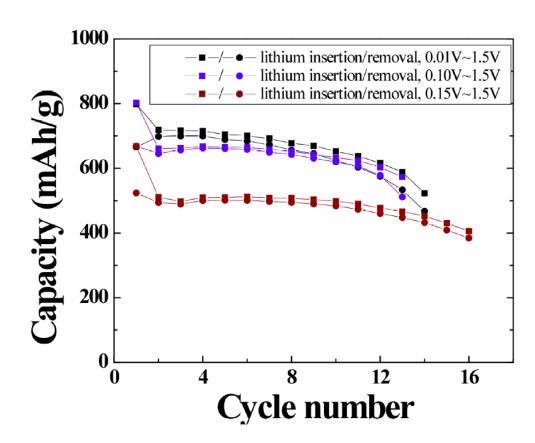
Milestone: What Conclusions can be drawn from Sn-Co? BATT effort completed March 2010

Stan Whittingham SUNY at Binghamton

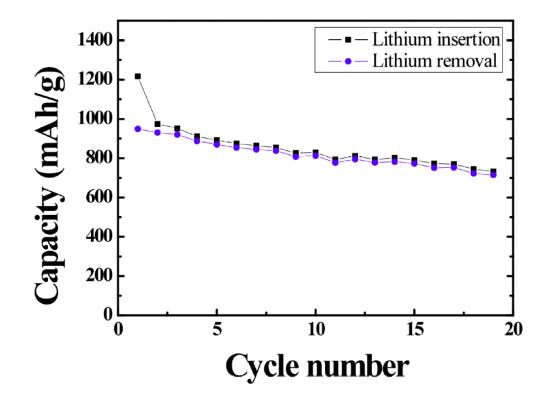

- Amorphous nano-tin probably meets technical needs of PHEV and EV
 - + Has excellent capacity retention on cycling
 - + Releases lithium at high rate
 - However, fails to meet cost and materials availability targets
 - Essentially SnCo alloy
 - Fails to meet charging rate capability
 - Also questions about cost of large-scale manufacturing
- What is next?
 - Effort shifted to cobalt-free nano tin materials
 - Reaction mechanism still not known
 - Will be studied under BES EFRC
 - Intercalation followed by conversion (ejection of magnetic cobalt)

Milestone - Other Alloy Anodes: Mixed Aluminum Based Anode

Stan Whittingham SUNY at Binghamton


- Work continuing on silicon-based anodes
- Successfully formed an aluminum based anode lacksquare
 - Cycles much better than pure aluminum in carbonates

- A clue that aluminum may yet work


Aluminum-Silicon Alloys

- Aluminum-silicon alloy mixed with carbon
- Evaluated as function of discharge cut-off voltage
 - Capacity fades in all cases
 - Less than 100% efficiency
 - In contrast, tin cycles with close to 100% efficiency

Silicon holds Capacity better than Al-Si

- Silicon formed by ball-milling and high temperature anneal
 - Cycled at 0.5 mA/cm²
 - Less than 100% efficiency
 - In contrast, tin cycles with close to 100% efficiency
- Aluminum based systems are a Nogo

Silicon cycles well when Capacity Limited

20

15

Silicon formed by ball-milling and high temperature anneal •

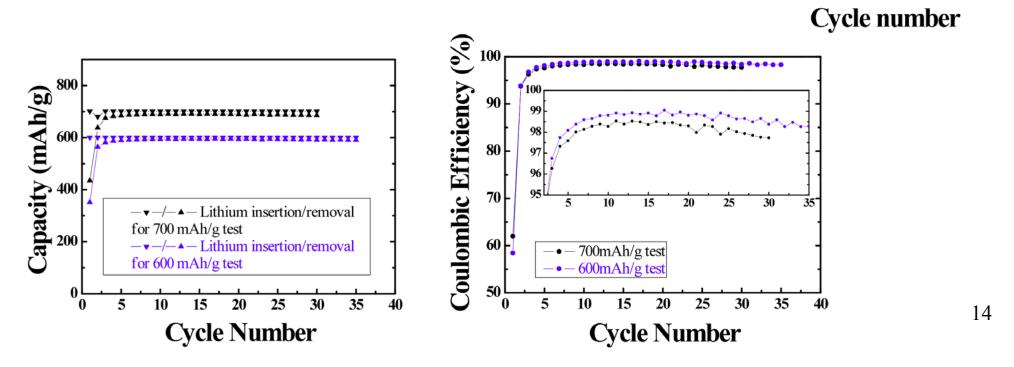
500

400

300

200

100


0

5

10

Capacity

- Cycled at 0.5 mA/cm^2
- Charged only to 0.9 volts 500 mAh/g \leftarrow
- (mAh/g) Charged to 1.5 volts – 600/700 mAh/g \downarrow
 - Still less than 100% efficiency

Collaboration and Coordination with other Institutions

Stan Whittingham SUNY at Binghamton

Collaborations with National Labs

- LBNL Robert Kostecki on changes of tin surfaces on cycling
- ANL Peter Chupas on structure of amorphous materials
- BNL Expansion of particles on lithium reaction, and oxidation state
- NREL Transferred Electro-spinning technology with personnel

• Industry

- Working with Primet on novel nano-anode materials
- Contract underway with Advanced Materials & Primet on advanced anode/cathode materials and electrode manufacturing

New York State Battery Consortium

 Building collaborations between Industry, Academia, and Government (NYBEST-NYSERDA)

- Emphasize tin nanostructures
 - Tin shows high rate capabilities
- Synthesize nano-tin by a range of techniques
 Solvothermal, electrospinning and mechanochemical
- Protect these nanoparticles from reaction with the electrolyte by a protective layer
- Substitute part of the main metal, tin, to raise the redox potential and thus the safety
- Identify the structural and surface changes of tin anodes during cycling working collaboratively with LBNL.
- Continue to explore new anode host materials.

Summary

- Concluded study on nano-amorphous tin Concept Go
 - Rate Capability
 - High lithium release rate
 - Low lithium insertion rate
 - Capacity maintained on cycling at all depths of discharge
 - Meets most technical targets for PHEV
 - Higher capacity than carbon anodes, both volumetric and gravimetric
 - Recent reports by the Army Research Lab support excellent technical attributes of this material; recommended for military use
- Above material now needs mimicking using low cost additives
 - Tin shows higher efficiency on cycling than silicon
- Aluminum-based anodes are not effective, and work on them will be discontinued