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Overview
Timeline

= Start date: October 2005
= End date: September 2012
= Percent complete: 60%

Budget

« Total project funding

— DOE share: $4M
« FYO09 Funding: $1M
« FYO08 Funding: $1M

Barriers

Inadequate understanding
of the fundamentals of LTC

Inadequate understanding
of the fundamentals of
mixed mode operation
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Objective: Enhance understanding of clean and efficient
engine operation through detailed numerical modeling
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Milestones: We have developed and experimentally
validated detailed engine modeling tools

Lawrence Livermore National Laboratory

o Demonstrated accurate prediction of
partially stratified combustion
(January 2009)

e Developed improved surrogate
chemical kinetic model for gasoline
(January 2009)

o Analyzed SI-HCCI transition in ORNL
experiment (March 2009)

e Calculated PCCI combustion with an
artificial neural network-based
chemical kinetic model (March 2009)

L

2009 Annual Merit Review

4



Approach: collaborate with industry, academia and national labs
in the development of analysis tools leading to clean, efficient engines

Computational breakdown of the CHEMKIN - Multizone model
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Accomplishments: The Newton-Raphson method
efficiently solves nonlinear equations
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When solving a system of differential equations,
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Processing the Jacobian is the most computationally expensive
part of CHEMKIN-Multizone

= 94% of the total computational cost is spent generating the Jacobian
and solving the associated linear system.

Computational breakdown of the CHEMKIN - Multizone model

32M calls to the CHEMKIN 4400 Gaussian eliminations for
species production rate 1300 x 1300 system

o))
o

o)
o

N
(@)

B Original Method

Percentage of original cost
W
o

20
10 -
0 B
Generating Jacobian Solving Jacobian Other
System

Lawrence Livermore National Laboratory UL-

2009 Annual Merit Review 8



Chemkin multizone produces a block-diagonal Jacobian
Can we take advantage for reduced computational time?
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New procedure: use LLNL’s ODE integrator
with an iterative matrix solver (DLSODPK)

= Use LLNL's iterative solver DLSODPK along with a preconditioner matrix P
P-1Ax = P-b
= Here P is the Jacobian of a simplified CHEMKIN-multizone model that yields
a block diagonal matrix (neglecting interaction between zones)

Internal zone
variables

. Zero
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The new DLSODPK scheme accelerates computations

enabling detailed multizone kinetics on desktop PCs
Computational breakdown of the CHEMKIN - Multizone model

60

17x fewer calls to CHEMKIN
species production rate

Total Gaussian elimination cost is
+400x smaller
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250x speedup for 40 zones; 24 minutes (100 hours) 63 species
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We are analyzing ORNL results for stability and emissions
during SI-HCCI transition due to increased residual gas fraction
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1-dimensional chemical kinetic model
accurately matches pressure traces for motored, Sl and HCCI cases
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ORNL Test data for Sl to HCCI transition:
heat release patterns vary with residual gas fraction
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LLNL Simulation results for Sl to HCCI transition:
heat release patterns vary with residual gas fraction
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HCCI is more than a promising engine operating regime.
HCCI is also an excellent platform for
developing & testing high fidelity chemical kinetic models
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Crank Angle, 10%
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Gasoline surrogate model accurately predicts ignition time

as a function of equivalence ratio
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But it does not properly replicate ignition time
as a function of intake pressure
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Analysis of pressure sensitivity of low temperature reaction steps
may offer guidance toward improving quality of agreement
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Increasing the reactivity of the radical recombination reaction
R + O, = RO, matches experimental results up to ~1.7 bar intake
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We obtain improved agreement by reducing activation energy
of chain branching reactions as a function of pressure
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We are analyzing three consecutive cycles

of the Sandia automotive PCCI engine (Steeper)

Sandia Automotive HCCI Engine
operated by Dick Steeper

PHI = 0.293
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CFD by:
Randy Hessel
UW-Madison;
Salvador Aceves and

LDban Flowers, LLNL
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The Sandia engine runs in PCCI mode with dual injection:
one injection during NVO and a main injection
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KIVA3V-MZ-MPI shows promise for
accurately predicting direct injected PCCI
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Future work: we are preparing our codes for public release
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Future work: extend applicability and
computational efficiency of analysis tools
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Summary: we are enhancing our analysis capabilities

and improving computational performance
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