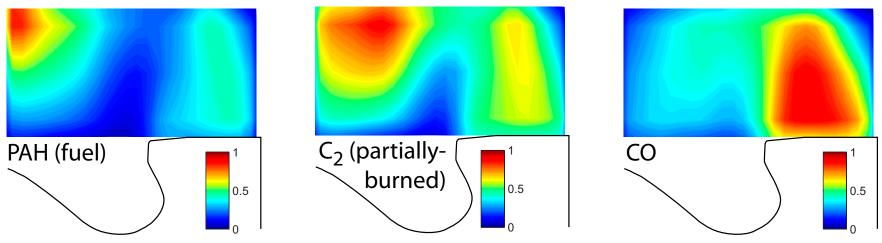


Mixture Formation in a Light-Duty Diesel Engine

Paul C. Miles, Benjamin R. Petersen, Dipankar Sahoo Sandia National Laboratories Livermore, CA USA

Directions in Engine-Efficiency and Emissions Research DEER 2012 October 15-19, 2012 Dearborn, MI

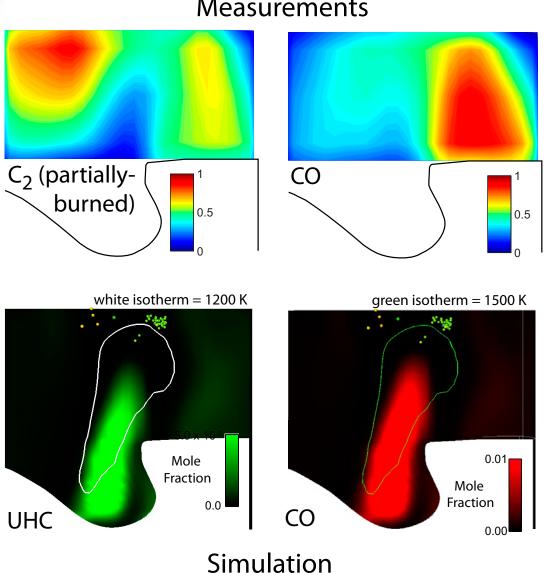
Acknowledgements: Gurpreet Singh, DOE EERE-OVT



General Motors Corporation

At low-load, UHC and CO emissions under LTC conditions are dominated by lean bulk gas mixture

Measured UHC/CO distributions at 50° aTDC (Deep-UV LIF)

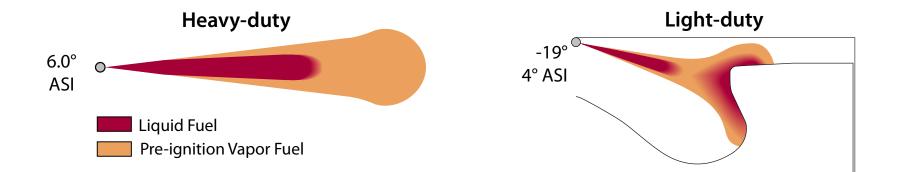


The lean bulk gas mixture is mainly in the squish volume and uppercentral cylinder

- ? How is this mixture formed and transported within the cylinder as injection, ? mixing, and combustion proceed?
- ? What are the relative roles of mixture formation and chemical kinetics in creating ? these emissions?
- ? How do these roles change with operating parameters? ?

Comparisons with simulations indicate that fuel-air mixing may not be adequately predicted

Measurements

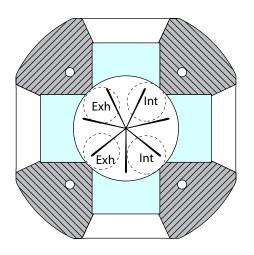

How sensitive are the simulation results to:

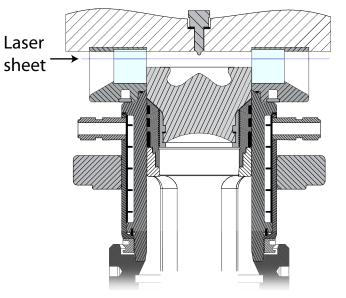
- •? Near-nozzle modeling practices?
- •? Grid resolution?
- •? Nozzle geometry / targeting?
- •? Ambient flow (swirl)?
- ? Injection rate?
- •? Reduced kinetic mechnisms??

Mixture preparation has not been studied quantitatively in light-duty engines

The mixture preparation processes in light-duty engines is very different from the "free-jets" characteristic of heavy-duty engines:

- •? Light-duty engines have strong wall interactions, including liquid phase impingement and re-direction of jet momentum by the piston surfaces
- •? Swirl creates a strong cross-flow which, near TDC, is strongest at the jet stagnation region near the bowl lip


There are no reported quantitative measurements of the fuel-air equivalence ratio distributions in light-duty engines



Engine Facility and Experimental Set-up

Measurements are made in a GM 1.9L optically accessible engine

- Piston geometry has production-like bowl and valve pockets
- Top ring-land crevice approximately 3–4 times volume of production engine crevice
- Gap-less compression rings reduce blowby
- Recessed liner windows allow squish volume access @TDC
- Fluorescence collected through piston

Engine Geometry		
Bore	82.0 mm	
Stroke	90.4 mm	
Displ. Volume	0.477 L	
Geometric CR	16.7	
Squish Height	0.88 mm	

Injector specifications


Injector	Bosch CRI2.2
Nozzle Type	Mini Sac (0.23 mm ³)
Holes	
Nozzle diameter	0.139 mm
Included Angle	149°
Hole geometry	KS1.5/86

Engine Facility and Experimental Set-up

Measurements are made in a GM 1.9L optically accessible engine

- Piston geometry has production-like bowl and ? valve pockets)?
- ?Top ring-land crevice approximately 3–4 times)? volume of production engine crevice?
- ?Gap-less compression rings reduce blowby?
- ?Recessed liner windows allow squish volume ? access @TDC)?
- ?Fluorescence collected through piston)?

Engine Geometry

Bore	82.0 mm
Stroke	90.4 mm
Displ. Volume	0.477 L
Geometric CR	16.7
Squish Height	0.88 mm

Injector specifications

Injector	Bosch CRI2.2
Nozzle Type	Mini Sac (0.23 mm ³)
Holes	
Nozzle diameter	0.139 mm
Included Angle	149°
Hole geometry	KS1.5/86
1	

CRF*

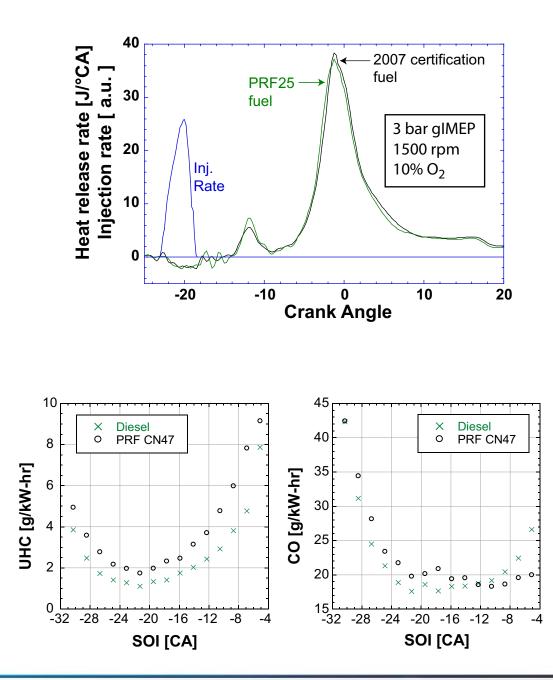
Operating conditions

Single injection, low temperature 'PCI-like' operation ($10\% O_2$)

Engine speed	1500 rpm
Load	3 bar
Intake Pressure	1.5 bar
Swirl ratio	1.5, 2.2, 3.5, 4.5
Squish Height	0.88 mm
Motored TDC density [*]	21.1 [kg/m ³]
Motored TDC temperature [*]	908 [K]
Injected fuel quantity	typically 8.8 mg (single injection)
Global Equivalence Ratio [†]	0.4
Injection pressure	500, 860, 1220 bar
Start-of-Injection (SOI)	-27.8, -23.4, -12.5°CA aTDC
Injection duration	~ 5.4°CA (600 μs)

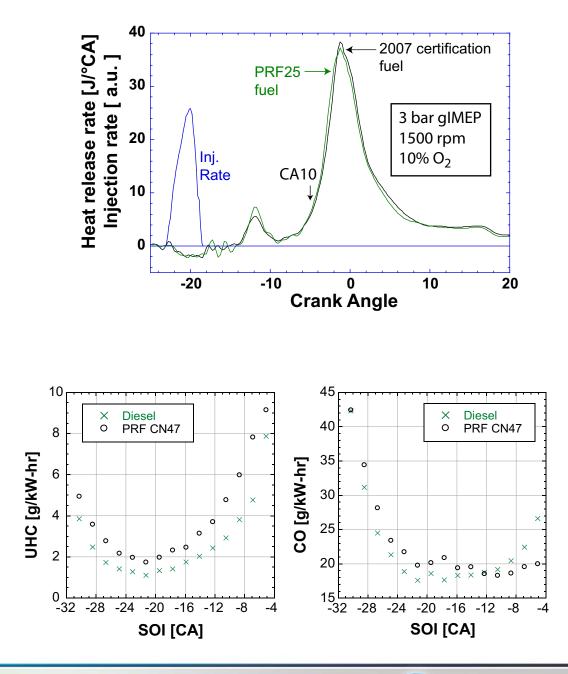
^{*} based on GT-Power modeling of the induction and compression stroke [†]assumes a 10% O₂ concentration

Fuel & Tracer Selection


- Diesel fuel unsuitable due to unknown photophysics
- Toluene tracer (0.5%) in PRF25 fluorescence-free base fuel
 - Known photophysics (T, P dependency)
 - Thermal stability
 - Closely matched boiling points

Fuel & Tracer Selection

- Diesel fuel unsuitable due to unknown photophysics
- Toluene tracer (0.5%) in PRF25 fluorescence-free base fuel
 - Known photophysics (T, P dependency)
 - Thermal stability
 - Closely matched boiling points
- Matches combustion phasing, HR and HC/CO emissions of CN47 diesel under early-injection operation



Fuel & Tracer Selection

- Diesel fuel unsuitable due to unknown photophysics
- Toluene tracer (0.5%) in PRF25 fluorescence-free base fuel
 - Known photophysics (T, P dependency)
 - Thermal stability
 - Closely matched boiling points
- Matches combustion phasing, HR and HC/CO emissions of CN47 diesel under early-injection operation
- Measurements made in an N₂ atmosphere (Matched T and ρ)
- Data representative of fired operation through ~ CA10

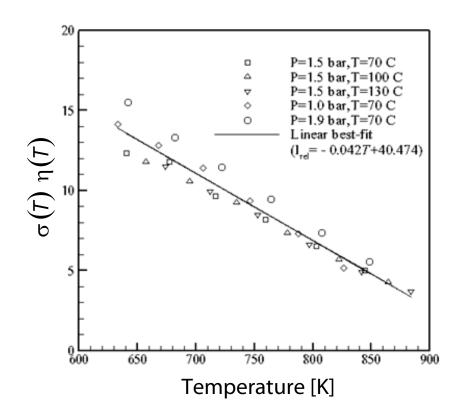
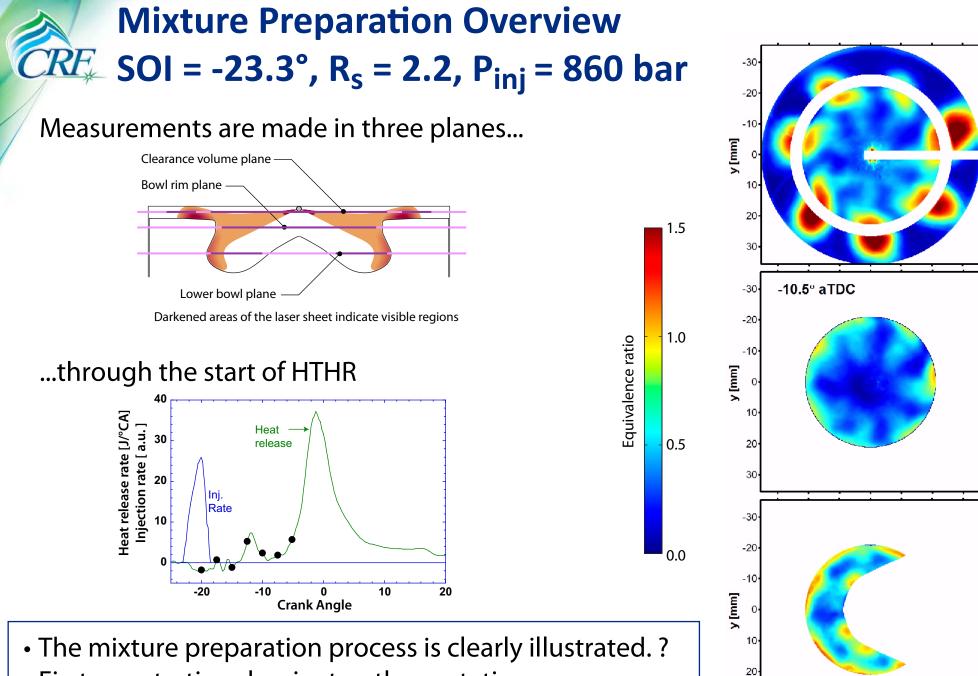


Image Processing Summary


- Data images are corrected for background interference and optical distortion
- "Flat-field" calibration images, obtained in homogeneous mixtures with known χ_{fuel} , further correct for laser sheet inhomogeneity
- Fuel mole fraction is computed from:

$$\chi_{fuel} = \chi_{fuel,cal} \frac{S_{toluene,d}}{S_{toluene,cal}} \frac{E_{cal}}{E_d} \frac{T_d}{T_{cal}} \frac{P_{cal}}{P_d} \frac{\sigma(T_{cal})\eta(T_{cal})}{\sigma(T_d)} \frac{\eta(T_{cal})}{\eta(T_d)}$$

- The product σ(T)η(T)
 from *in situ* calibration studies
- With the calculated χ_{fiel} , a local temis determined perature is estimated using an adiabatic mixing model and the χ_{fuel} estimate is refined until convergence is achieved
- Mean images and 'frequency' distributions from single-cycle images are computed

- First penetration dominates, then rotation.
- Note the thorough mixing in the upper central cylinder)?

20

30

30

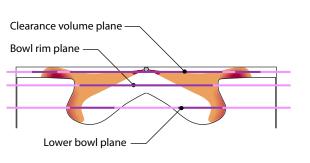
-30

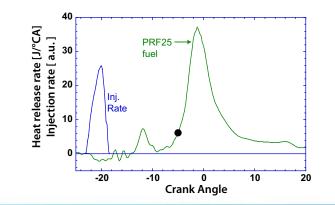
-20

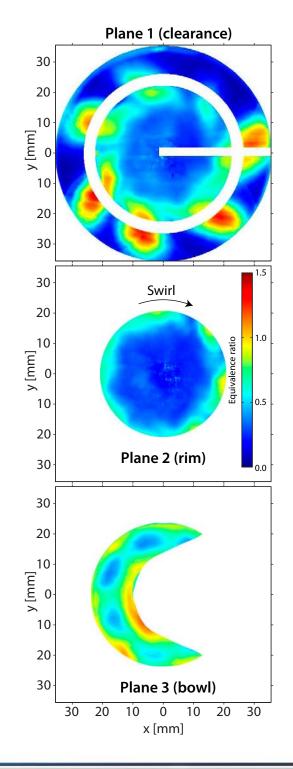
-10

0

x [mm]

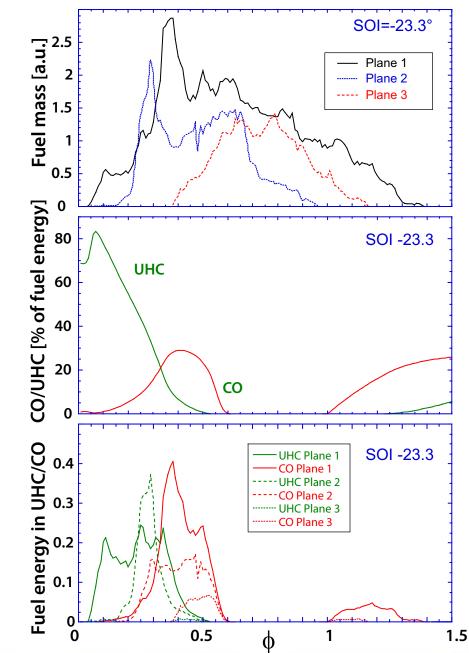

10


CA10 Mixture Distribution SOI = -23.3°, $R_s = 2.2$, $P_{inj} = 860$ bar


At the start of HTHR:

- •? Fuel in Plane 1 is near the cylinder walls and will be forced into the ring-land by during high temperature heat release
- Fuel-rich mixtures persist within the squish volume, but <φ> is less than 2 (single-cycle images show this also)
- ?There is substantial over-lean mixture in the upper-central regions of the bowl and clearance volume.

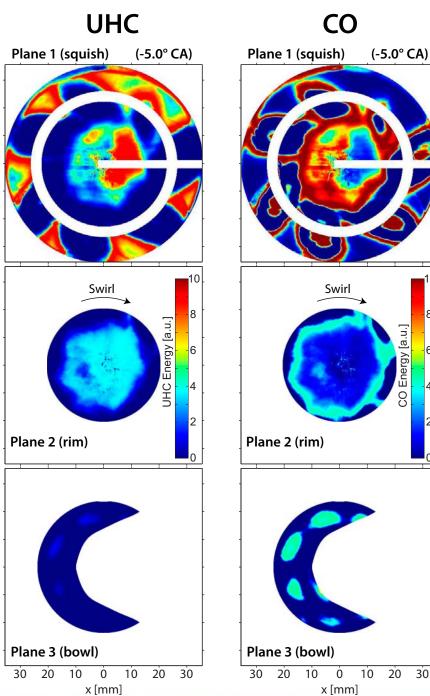
Darkened areas of the laser sheet indicate visible regions

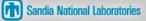


COMBUSTION RESEARCH FACILITY

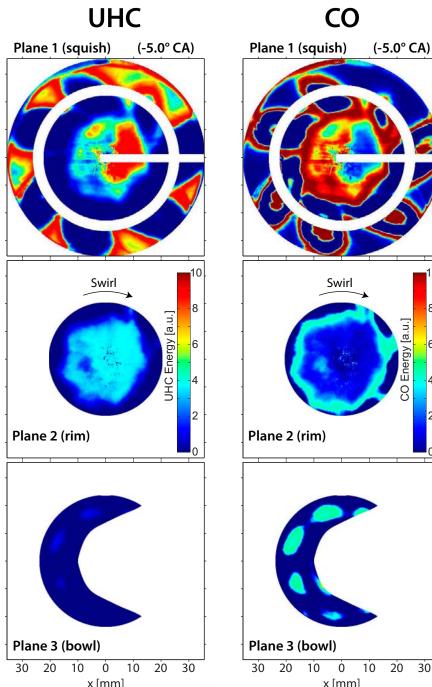
The measured ϕ distributions at CA10 can be linked to the simulations to estimate emissions

The fuel mass at each ϕ can be computed from the images $m_{fuel}(\phi) = \sum_{j}^{N_j} \sum_{i}^{N_i} m_{fuel,i,j}(\phi) = \sum_{j}^{N_j} \sum_{i}^{N_i} \phi_{i,j} m_{\text{charge},i,j} \left(\frac{m_{fuel}}{m_{\text{charge}}}\right)$ Multiplied by the UHC or CO yield predicted in the absence of further mixing To provide a qualitative prediction of UHC and CO emissions from



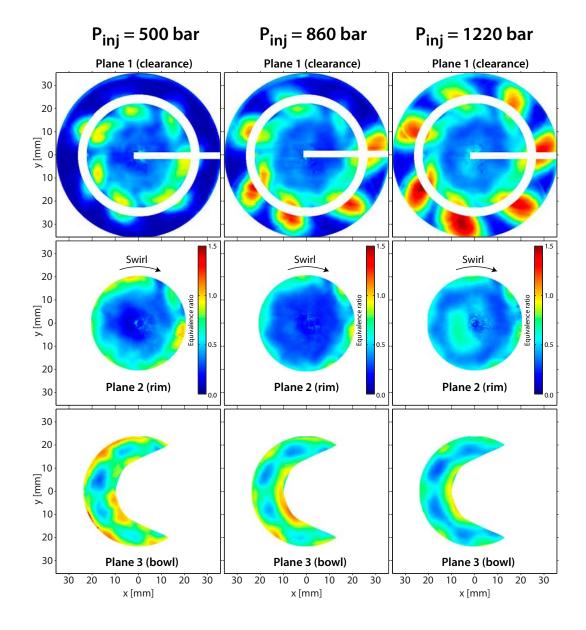

both rich and lean sources

We can also generate images of expected UHC & CO distributions


- Strong bias toward UHC & CO sources from lean mixture in the upper cylinder
- Emissions are expected to be dominated by the squish volume and the uppercentral region of the cylinder (as expected from UHC/CO measurements)

We can also generate images of expected UHC & CO distributions

- Strong bias toward UHC & CO sources from lean mixture in the upper cylinder
- Emissions are expected to be dominated by the squish volume and the uppercentral region of the cylinder (as expected from UHC/CO measurements)
- Strong evidence that CO and UHC emissions are very closely linked to the initial mixture preparation process


Impact of Injection Pressure (\$\overline\$ dist. @ CA10)

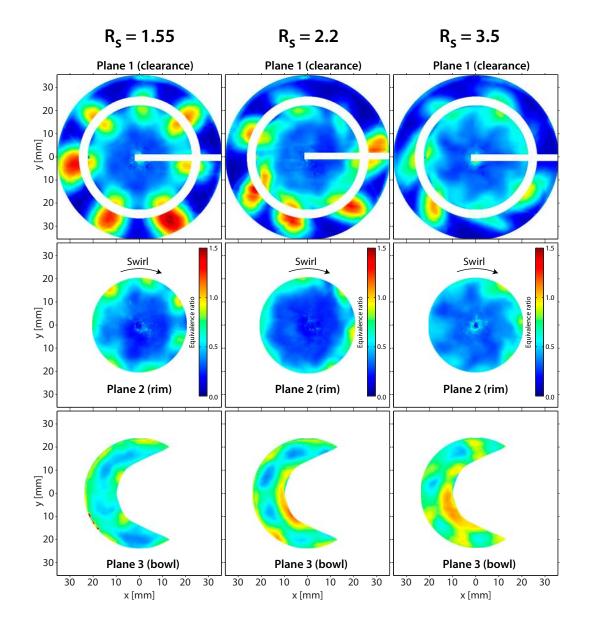
Increased P_{inj} gives:

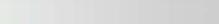
- Greater penetration into the squish volume, with greater potential for crevice UHC
- Higher φ in the head of the jet, with greater potential for soot and rich-mixture CO and UHC
- •?More over lean mixture in the upper-central region of the combustion chamber
- •?More over lean mixture deep in the bowl

	P _{inj} [bar]	CO [g/kg-f]	UHC [g/kg-f]
Engine	500	96.7	10.5
5	860	121.2	11.2
emissions:	1220	130.0	11.0

See ASME ICES2012-81234 for additional details

Impact of Swirl Ratio: Start of HTHR (CA10)


Variation of swirl ratio increases some UHC/CO sources and decrease others, resulting in complex emissions behavior

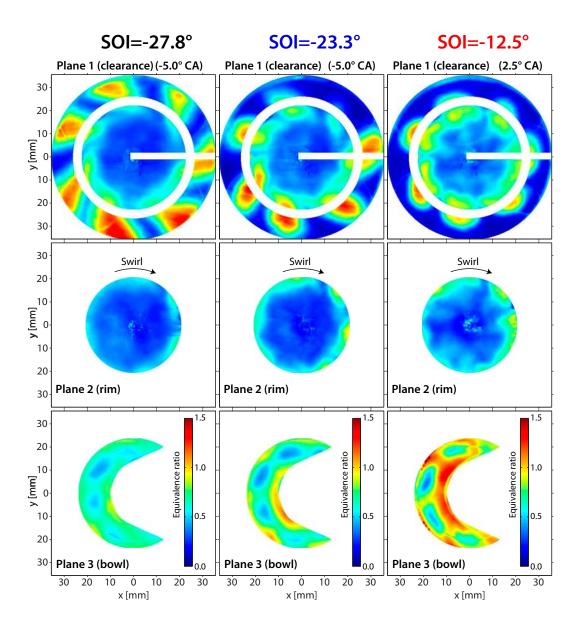

Takeaways:

- •? UHC and CO sources initially increase with swirl due to increased lean upper cylinder mixture (squish volume)
- •? CO reduced at higher swirl due to mixture stratification

	R_{s}	CO [g/kg-f]	UHC [g/kg-f]
Engine	1.55	96.2	8.9
5	2.2	117.8	10.5
emissions:	3.5	95.3	12.3

See ASME ICES2012-81234 for additional details

Sandia National Laboratories

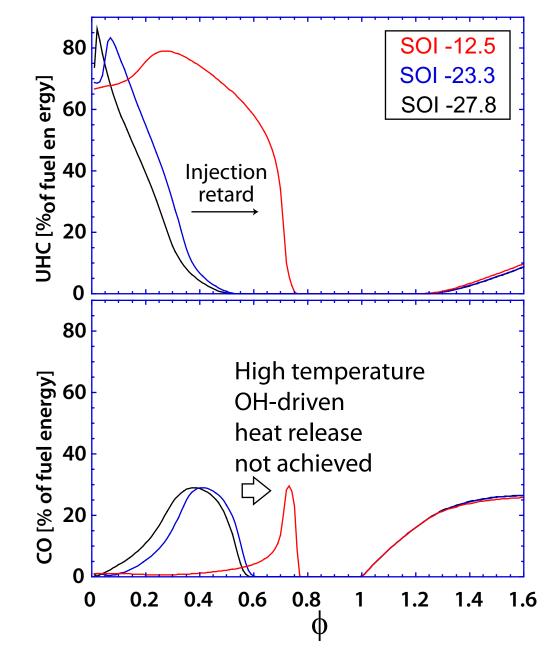


Impact of Injection Timing (Start of HTHR)

Clear trends observed as injection is retarded:

- Less fuel in the squish volume, less penetration, lower peak φ
- Less lean mixture between the heads of the jets
- Less over-lean mixture in the upper-central regions
- Richer mixtures deep in the bowl, but not overly rich

From a mixture preparation viewpoint, retarded injection is preferred



See COMODIA 2012 for additional details

...but retarded injection significantly impedes lean mixture oxidation

- Retarded SOI significantly increases the φ at which complete oxidation occurs
- UHC emissions suffer to a greater extent than CO (slow reaction impedes formation of CO)
- Optimal SOI timing is due to a balance between mixture formation and kinetics of oxidation

 Considerable progress has been made in understanding how the mixture preparation process impacts UHC and CO emissions in low-temperature diesel combustion systems

- Considerable progress has been made in understanding how the mixture preparation process impacts UHC and CO emissions in low-temperature diesel combustion systems
- Emissions expected from examination of the mixture distributions formed during the ignition delay period correlate well with measured engine-out emissions.

The early mixture preparation process exerts a profound influence on the combustion and emissions formation processes

- Considerable progress has been made in understanding how the mixture preparation process impacts UHC and CO emissions in low-temperature diesel combustion systems
- Emissions expected from examination of the mixture distributions formed during the ignition delay period correlate well with measured engine-out emissions.

The early mixture preparation process exerts a profound influence on the combustion and emissions formation processes

• Mixture formation and kinetics interact to result in an optimal SOI

With advanced injection, poor mixture preparation leads to both over-lean and over rich mixture, but fast kinetics promotes oxidation

With retarded injection, mixture formation is improved, but volume expansion impedes oxidation of a wide range of φ

- Considerable progress has been made in understanding how the mixture preparation process impacts UHC and CO emissions in low-temperature diesel combustion systems
- Emissions expected from examination of the mixture distributions formed during the ignition delay period correlate well with measured engine-out emissions.

The early mixture preparation process exerts a profound influence on the combustion and emissions formation processes

• Mixture formation and kinetics interact to result in an optimal SOI

With advanced injection, poor mixture preparation leads to both over-lean and over rich mixture, but fast kinetics promotes oxidation

With retarded injection, mixture formation is improved, but volume expansion impedes oxidation of a wide range of φ

• Our future efforts will be concentrated on multiple injection strategies and on better understanding bowl geometry effects

