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= purpose of work AsMeS-L

OBJECTIVES: Determine battery performance for high-power systems via multiscale modeling
of thermo-electrochemistry. Model SEI film formation as a precipitation process including

a nucleation and a phase growth. Determine SEI layer properties depending on cycling,
charge/discharge rate and temperature

MILESTONES:
(a) Implement multiscale thermo-electrochemistry model (Mar. 10) (implemented)
(b) Implement SEI formation modeling (May 10) (phase-field modeling is ongoing)

(c) Measure SEI layer properties to inform these models (Aug. 10) (experiment setup is designed and
ORNL collaboration in place)
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= barriers A MeSsL

electrode, particle aggregates and fracture of particles; closely related to SEl layer

formation on electrodes
electrode configuration (e.qg., composition) fracture due to intercalation and/or compression

l’."t

* o:. '
4

carbon black
B .:‘“"E'-'

graphite cathode
material [11H. Wang, ¥.-. Jang, B. Huang, D. R. Sadoway, and Y.-M. Chiang, “TEM Study of Electrochemical
Cycling-induced Damage and Disorder in LiCoQ; Cathodes for Rechargeable Lithium Batteries®, Journal of
The Electrochemical Sociefy, Vol. 146 (2), pp. 473-480, 1999)
article aggregates SEl layer formation
(active material & additives) 315 - (4]

[B]1PL. Moss, G. Au, E.J. Plichta and J.P. Zheng, “Investigation of solid electrolyte interfacial layer development
during continuous cycling using ac impedance specira and micro-structural analysis,” Joumnal of Power Sources,

Vaol. 189 (1), 2009
[4]J. Yana, B.-). Xia, ¥.-C. 5u, X.-Z. Zhou, J. Zhang, A.-G. Zhang, "Phenomenologically modeling theformation

and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries,” Electrochimica
Acta, Vol. 53, pp.T06%9-TOT8, 2008
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& overview/ lab efforts AeM+S-L
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objectives

* map relationship between the ionic and
electronic conductivities

+ correlate conductivities to performance

* [dentify optimal schema for high energy
cells

finding/results

* tfrade off between ionic conductivity and
electronic conductivity

* quantitative guidance for the design of
high energy density and guidelines for
the design of cathode systems
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= clectrode construction and optimization: FY09-10 A*M+S - L

approach

* model 3D porous electrode and evaluate
effective material properties

* simulate 1D electrochemical model for
battery performance

* apply surrogate modeling to correlate
conductivities and battery performance

publications

* Chen, Y.-H., Wang, C.-W., Zhang, X.,
Sastry, A.M., 2010,"Porous cathode
optimization for lithium cells: lonic and
electronic conductivity, capacity, and
selection of materials", Journal of Power

Sources, v.195, pp.2851-2862.
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W electrode optimization: FY09-10  A«M-s-L

'ionic vs. electronic conductivity

05 - ) J!__Dwra.'f =0
. porosity: O} sute e

0a | ' ;:ZW G, mour. OVErall liquid phase conductivity
%E‘ ', . 40%~50% O, .. - DUk electrolyte conductivity
2203 *>50% o, ... -nomalized effective ionic conductivity
o8 |
85 3
002} Vet vl L,
E E . > -‘:; e l. :1. -' * .
g2 ettt e S » there is a trade-off between

0.1 R jonic and electronic conductivity

. * jonic conductivity increases

0 50 100 150 200 250 300 350 with increase in porosity

effective electronic conductivity (S/m)
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electrode optimization: FY09-10 AsMeSeL

cathode thickness: 200pum
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electronic conductivity (S/m) normalized ionic conductivity

* best electronic conductivity or ionic conductivity doesn't ensure best specific
energy
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"ii i : X = -
‘Sw electrode optimization: FY09-10 AeMsS-L
B « thicker electrode or more active material vf.:

larger theoretical capacity but slow in ion

active material vf. transport

« thinner electrode or less active material:

350 fastin ion transportation but less theoretical
capacity
300 | O A . .
ERT TR ARy o SR PR « relatively lower capacity due to mass
g‘ 250 | -.:'-.‘.::-“4-' e 3.&_:.-_-4 L e . o balance effect of active material also results
S ,51.*: . TR e e in lower specific energy
= 200 } TSR N e 80
o - s =
] : ial V- .'t he 4 =
S 150 | active matenal vf.: e ) g_n
= * 30%~35% Ve, E%
o
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(= =]
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== J3-D microscopic electrode model: FY10 AeMeSeL
L
* 3-D microstructure characterization parameters
- volume fraction: active material in the electrode
- aspect ratio: interfacial area available for reactions
- equivalent particle radius: characteristic time for diffusion

* geometry modeling
- microstructure characteristics:10 ellipsoidal particles, aspect ratio 2, solid volume
fraction 0.6, equivalent radius 5.34um
- particles are packed using a collision-driven molecular dynamics algorithm [1]

Max: 9123 Max: 900.7 Max; -0.674
9000 Imc- o
8500 Msos .

118000 ) ! M / 7-0.75

117500 : 8% il e i

117000 11894 . Y 1 ' 0.8
6500 892 -0.85
6000 a0
5500 -0.9

Min: 5497 Min: 889.1 Min: -0.911

Liion concentration in solid phase Liion concentration in liquid phase reaction current density at interface
{mol/im?) {mol/m?) (A/m?2)

[1]A Donev, F. H. Stilinger, and S. Torquato, Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Particles. 1. Algorithmic
Details I1. Applications to Ellipses and Ellipsoids, Journial of Computational Physics, 202, 737-764 (part I) and 765-793 (part Il) (2005).
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== 3-D microscopic electrode model: FY10 A+*Me+S-L
| Max: -0.0125
=¢ comparison: reaction current density Ky
' 503
TR 0.4
—&— pseudo 2D N ft""_ > 11-0.5
03t o P Fany 0.6
< T i A 0.7
E -0.4: N S ~° -0.
< ' * | 05
T 05/ -1
= i Min: -1.024
2 0.6/ 1’( ]
=] y . -
2 .07 - : S
e X -0.72
% .08 {“} """ ""I S !-u.m
E — ______'_'_'—'----_._....‘........... E E_G.?G
5 “09 | —> 0,78
= (0.8
4l ’&_v\g_o ] 10,82
0.84
44! _ . , _ _ 0.86
-10 0 10 20 30 40 50 -0.88
t (min) -0.9
time history of normalized reaction current density Min: -0.915

* local distribution of variables is important for normalized reaction current density

+ detailed 3-D microscopic modeling reveals distribution of local variables
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liquid phase
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macroscopic scale
1-D Li-ion cell

o |
<% multiscale thermo-electrochemical model: FY10 AsMe+S-eL

anode | separator | cathode

ct
V. [f“vﬁ +&x5V(In c_z}] +J,, =0

Nl

=V-(D Ve, )+,

ac,
—i_v.
ct

"V, +dJ, =0

(DVey )+,

oT L
eff _eff eff
c. —=V. (AT VT |+Q

closure terms
- effective material properties
- volumetric reaction rate

- heat generation
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'i'
nucleation process growth process

“ @

SEMimages for the surface of the Si thin electrode [1]

free energy of the system

cc
G= jn{f(e>+§h(Vc>*JdV+jmi% +(Gg ~0sp)p(C))dA [E - '“”L
kinematics + Kkinetics (4=71"0)- Wiﬂ)'u
% 4v.3=0 J=MF (n-Vu=0)|,.(n-Ve+ (o9~ 0g)p'(c)=0)|,
ct

[1] Yong Min et al., SEI Layer formation on amorphous Si thin electrode during precycling, Jounal of The Electrochemical Society, 154 6 A515-A518 2007
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(¥ Li-ion diffusion in LiMn,O, FY10  A-M-s-L

» use of dispersed particle based electrode models for Li-ion diffusion study, also
for materials characterization

* performing various electrochemical testing including cyclic voltammetry (CV)
and potentiostatic intermittent titration technique (PITT)

6.0 KM
highly dispersed particles on a AFM image of LiMn,O, particle on
gold foil substrate gold substrate; sample 052-83-02
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'J -ion diffusion in LiMN,O, FY10  A«Mes-L

1E-00 - . 1E-09 . .
anodic «PITT cathodic PITT
(charging) X CV (discharging) +OV
a?
L ] -l.
% 1E-10 p % 1E10 ~
INE L] - ll.
-EL .. » b4 .m.'.. E—- + i.
Dj ..'o * [_-_3_‘ *0ege n'
1E-11 +— L“.’ ....... ..1' ™ 1E-11 | I 2oy + o
™ ".. -® - "h.,. .-. ‘“‘ i .'
.0 s " ) .
- o* - * .
™ L ]
1E-12 1E-12
3.8 39 4 41 42 4.3 38 39 4 41 42 43
Potentialvs. Li/lLi+ (V) Potential vs. LilLi+ (V)
Cell: 052-90-04 cell: 052-90-04
Scanning range: 3.84~4.30 V Scanning range: 3.84~4.30 V
Scanning rate: 10mV/s Scanning rate: 10mV/s

[11M.D. Chung, X.C. Zhangand A M. Sastry, Experimental Study of Diffusion Coefficients in Single LiMn,0O, Particles, ECS 215t
Meeting, San Francisco, CA, May 28, 2009

MJN [VERSITY OF MICHIGAN M MichiganEngineering



W& Li-ion diffusion in LiMn,0,: FY10  A-m-s-L

1.00E-13 Literature value vs.
present study result

*bulk A (PITT)
Wbulk B (PITT)

; Particle (PITT) 4bulk C (CV)

©bulk D (CV)

®bulk E (CV)

Bulk (PITT) +thin film A (CV/PLD)
Othin film B (PITT/ESD)
=thin film C (PITT/ESD)

Bulk (CV) Othin film D (PITT/sol-gel)
Othin film E (CV/PLD)
Athin film E (EIS/PLD)
Xthin film E (PITT/PLD)
+ particle (CV)

Bulk cell Thin film Present Bparticle (PITT)
experiment experiment study
(literature)  (literature)

Thin film (PITT)
Thin film (EIS)

1.00E-11 Thin film(CY)
+ Paricle (CV)

D,; (cm?/s)

1.00E-09

1.00E-07
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| layer characterization: FY10 - A

/) « SEl(solid electrolyte interphase) layer
« SEllayeris formed both cathode and anode during cycling
« SEllayer prevents direct reduction of the electrolyte
» Reduction of energy density of Liion battery is unavoidable
* |[tis importantto understand mechanism of its formation and microstructure
» Challenges: very thin and complex microstructure

+ available characterization techniques

« TEM (transmission electron microscopy): thickness of SEl layer, local
variation of atomic structure

+ AFM (atomic force microscopy): observation of surface morphology,
local stiffness (modulus)and conductivity

« XPS (X-ray photoelectron spectroscopy) and AES (Auger electron S
spectroscopy): elemental identification and bonding state
determination

* IR (infrared) and Raman spectroscopy: identification of
surface/interface species, defects, and structure change

Figure 1. TEM at ORNL Figure 2. AFM at ABCD
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layer characterization: FY10 AsMeS-L

~¢ preliminaryresults : TEMimage of SEI layer formed on the LMO particle in
= composite electrode and modulus mapping of LCO thin film electrode
using Veeco iCon system.
* Thickness of SEl layer: 3 to 4 nm, amorphous phase
* RMS roughness (Figure 2): 11.5 nm
* Mean value of Young’'s modulus (Figure 3): 1.94 = 0.71 GPa

~ SEllayer

Figure 1. SEl layer formed Figure 2. Surface morphology of LCO thin Figure 3. Modulus mapping of LCO thin film
on LMO surface annealed at700" C (before cycling) surface annealed at 700" C (before

cycling)
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= accomplishments and status AsM-S-L

* +FY09-10 Fundamental: ionic/electronic conductivities were studied in a 3D porous
composite electrode. Surrogate modeling was applied to correlate effective
conductivities and battery performance. Practical: A trade off between ionic conductivity
and electronic conductivity was revealed and a quantitative guidance is proposed for the
design of high energy density and for the design of cathode systems.

*FY10 Fundamental: A multiscale framework was proposed to include the electrode
microstructure information in battery scale modeling. Practical: the constructed
surrogate models fit the training data very well and give good prediction of the closure
term (i.e., reaction current density).
+Fundamental: electrochemical technique (e.g., CV and PITT) was applied for the
experimental study of Li-ion diffusion in dispersed single particles. Practical: measured
diffusion coefficient can be used as a SOC-dependent input for electrochemical modeling
of cathode systems.

*Fundamental: TEM and AFM study characterized SEI layer and surface morphology.
Practical: measured thickness and elastic modulus of SEI layer can be used as inputs

for modeling SEI layer

M MichiganEngineering
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future work AcMeS L

-'SEI formation and consideration of its effects on kinetics and thermo-
electrochemical performance will be sought. Both experimental and numerical
tools will be sought as well.

« We will continue to refine numerical models based on findings from simulated
performance and experiments: particle structures, film formations, and
temperature dependence as well.

« We will continue to explore progressive capacity degradation in electrodes in the
context of multiple scales and multiphysics coupling electrochemical kinetics and
thermal effects.
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