DOE - BATT Review - 2013 SUNY at Bincloor

Metal-Based High Capacity Li-lon Anodes

M. Stanley Whittingham

State University of New York at Binghamton
May 15% 2013

Project ID #
ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information




. Stan Whittingham
OVeereW SUNY at Binghamton
Timeline Barriers
+ Project start date: 01-01-2011 * Barriers addressed
* Project end date: 12-31-2014 — Lower-cost

— Higher volumetric capacity and

. . &0
Percent COInplete- 50% — Abuse-tolerant safer anodes

Budget Partners
» Total project funding * National Laboratories
— DOE $724.626 — Brookhaven; Argonne; Lawrence Berkeley
— Contractor share: Personnel * Local Industry
» Funding received - Primet
~ FY12: 172k$ Academia
_ FY13: 172KS$ — Other Anode Partners



Relevance and Objectives of Work 5 5o

 The primary objectives of our work are to:

— Increase the volumetric capacity of the anode by a factor of two
over today’s carbons

1.6 Ah/cc

— Increase the gravimetric capacity of the anode
. >500 Ah/kg

— Lower the cost of materials and approaches
— Be compatible with low cost layered oxide and phosphate
cathodes and the associated electrolyte
* The relevance of our work is:

— Achieving the above objectives
» Will increase the cell energy density by up to 50%.
« Will lower the cost of tomorrow’s batteries



. . Stan Whittingham
Relevance: Milestones SUNY at Binghamon

a)

b)

d)

Determine the limitations to the electrochemical behavior of
mechanochemical tin. Characterize these materials and determine
their electrochemical behavior. (Sep. 12)

Completed. The nano-size tin meets the gravimetric capacity of the Sn-
Co-C electrode. Ti reductant is superior to Al

Determine the electrochemistry of a new synthetic nano-silicon
material. (Sep. 12)
Completed

Determine the reaction mechanism of the nano-Sn-Fe-C system.
(May 13)
Ongoing. Carbon is an active element

Identify an anode candidate having an energy density of 2 Ah/cc for
at least 100 cycles. (Sept. 2013)

Ongoing



Stan Whittingham
SUNY at Binghamton

Approach and Strategy: Improved Anodes

* Place emphasis on low cost materials, tin and silicon
— Study modified tin initially
 Safer than silicon
— 2 Li1/Sn doubles capacity
— Find several simple synthesis methods
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Technical Accomplishments: Stan Whittingham

Barriers being Addressed SUNY at Binghamton
I

* High Cost

— Find a tin-based anode, that does not contain cobalt
* Low cost materials
* Low cost manufacturing method

* Low Volumetric Capacity of Li-ion batteries
— Volumetric capacity of Li-ion batteries limited by carbon anode
— Find a material with double the volumetric capacity

 Low Safety and Abuse-tolerance
— Find an anode that reacts with lithium faster

e Minimizes risk of dendrite formation

— Find an anode that reacts with lithium at 300-500 mV vs L1

* Minimizes risk of dendrite formation
« Allows for higher rate charging



Milestone (a) - Synthesis Approach: Stan Whittingham
Nano-size tin materials synthesized SUNY at Binghamton

 Method 1:

— SnO reduced by Ti and carbon with hard iron balls by mechanochemical methods
» Use of iron grinding media results in formation of Sn,Fe/C composite
— As reaction time increases, tin phase becomes Sn,Fe
— If reaction too long, iron phase is gradually formed after all Sn is converted to Sn,Fe

— Electrochemical behavior determined

» The capacity retention has been improved compared with our previous results.
* Good electrochemistry associated with reaction time (e.g. 10 hours better than 20 hours).
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Milestone (a) - Synthesis Approach: Stan Whittingham
Nano-size tin materials synthesized — T1 > Al SUNY at Binghamton

 Method 1:

— SnO reduced by Ti and carbon by mechanochemical methods '™

 Titanium found to be most effective reducing agent
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» Use of iron grinding media results in formation of Sn,Fe/C composite

» (Capacity retention is as good as in Ti-reduction, but the capacity is lower (~390 mAh/g).
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Increasing tin content reduces capacity and retention g5, whittingham
Electrochemical studies of SnsFe compound SUNY at Binghamton
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Milestone (a) achieved using method 1: Stan Whittingham
Tin-carbon electrode + Fe as Sn,Fe SUNY at Binghamton

SnFe Capacity/Rate Capability surpasses present commercial SnCo-C
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Milestone (¢) underway: Stan Whittingham
Reaction mechanism of nano-Sn-Fe-C SUNY at Binghamton

PDF analysis identifies phases formed
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Milestone (c¢) being achieved using method 1: Stan Whittingham

Volumetric energy density exceeds carbon SUNY at Binghamton
-

* Gravimetric capacity:
— Measured reversible capacity of 600 Ah/kg of total composite
— Sn,Fe contributes 804 Ah/kg of Sn,Fe
— Remainder contributed by carbon
— Must be C,Li1
— 1100 Ah/kg
— Theoretical capacity of 760 Ah/kg for total composite
— If C¢Li then theoretical capacity is 490 Ah/kg

* Volumetric capacity:
— Approaches 1.5 Ah/cc, based on above value of 600 Ah/kg

12



Milestone (a) completed: Stan Whittingham

Nano-size tin materials synthesized SUNY at Binghamton
-
* Method 2:
— FeCl; and SnCl, reacted with NaBH, by solvothermal treatment at 200 °C

 Product is Sn,Fe with particle size less than 100 nm
* Trace amounts of Sn remaining lead to capacity fade as in pure tin
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(left) XRD patterns of (A) Solvothermally formed Fe-Sn; (B) Planetary ball-milled (pBM) Sn-Fe-C composite; (C)
High-energy ball-milled (HEBM) Sn-Fe-C composite. Sn metal phase in the solvothermally formed material disappears

after high-energy milling with graphite. (right) Electrochemical cycling of this Sn-Fe alloy in two voltage windows; no
grinding with carbon. The current was 0.3 mA/cm? in the 1% cycle and then changed to 0.5 mA/cm? thereafter. 13



Milestone (a) completed: Stan Whittingham

Nano-size tin materials synthesized SUNY at Binghamton
-

e Method 2:

— FeCl; and SnCl, reacted with NaBH, by solvothermal treatment at 200 °C
 Product is Sn,Fe with particle size less than 100 nm
* Trace amounts of Sn remaining lead to capacity fade as in pure tin
— Sn removed by grinding with carbon

— Stable capacity can be obtained when high-energy ball-milling is utilized
— But capacity drops to 400 mAh/g
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(left) Original cycling of solvothermal Sn,Fe, and (right) cycling of this Sn-Fe alloy after ball milling (planetary and high
energy) in two voltage windows. The current was 0.3 mA/cm? in the 1% cycle and then changed to 0.5 mA/cm? thereafter.
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Milestone (b) underway: Stan Whitiingham
Nano-size silicon material synthesized SUNY at Binghamton

 Method 1:

— S1/MgO/graphite (SMOG) composite was synthesized by a two-step process high
energy ball-milling reduced by Mg and carbon by mechanochemical methods

 First step: SiO reduced by Mg by high energy ball-milling
« Second step: Product of 15! step high-energy ball milled with carbon
— Electrochemical behavior determined
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Milestone (b) completed: Stan Whitiingham
Nanosilicon synthesis and electrochemical behavior SUNY at Binghamton

 Method 2:
— Etching Al-S1 alloy
* Gives porous Si with 3D network
* XRD data yields a lattice parameter larger than pure Si
« EDS ~5 wt. % Al uniformly distributed in this material

Intensity

© | |
27.2
(B)
Element Wt% At%
A JL J 0479 AIK 05.11 05.31
(4) * L“’J UL P t ket SiK 94.89 94.69
Si JCPDS # 27-1402 135 Matrix Correction ZAF
| I | Al J(iPDS # 65-22%69
L 1 L | L | L |
20 30 40 50 60 68 7
20 (degree) l
(A) A1-819 (B) Sl Spheres and (C) brOken Sl o0 0.50 ll.'IIS 1.l|ll] 1;25 Lﬁl\lj 1.75 2.l|]ll 2.|25 2.|5ll 1 6
nergy - ke

spheres.



Milestone (b) completed : Stan Whittingham

Nanosilicon synthesis and electrochemical behavior SUNY at Binghamton
.

— Electrochemical behavior determined
e This porous nanosilicon material shows high lithium capacity

* Breaking the spheres enhances the contact between silicon and carbon, improving
capacity retention
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Collaboration and Coordination Stan Whittingham

with other Institutions SUNY at Binghamton
Y

 Brookhaven National Laboratory

— Provided samples of the new Sn.Fe compound
» Electrochemical studies completed

— Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function)
and XAS (X-ray absorption) studies

 Lawrence Berkeley National Laboratory

— Working with BATT anode team comparing tin and silicon materials
« Similar challenges, such as 15 cycle loss, being addressed

— Umicore nanograin Si material for Si baseline standard

 Primet Precision (Ithaca Co)

— Collaboration underway on nanosizing materials (Nano-scissoring™)

« NYBEST (New York Battery and Energy Storage Technology Consortium

— Building collaborations between Industry, Academia, and Government
18



Stan Whittingham
Future Work SUNY at Binghamton

* Nano-Sn,Fe
— Optimize synthesis methods

e Mechanochemical method
— Find viable source of iron for scale-up, that maintains nano-size

* Solvothermal method
— Eliminate tin metal and oxide impurity

— Increase capacity
— Make GO/NOGO decision

— Reduce first cycle loss
* Find optimum carbon and titanium content

— Fully understand the reaction mechanism

* Nano-Si
— Investigate other reductants, such as titanium
— Reduce 1%t cycle loss
— Improve cycling performance

19



Summary Stan Whittingham
SUNY at Binghamton

* Nano-tin
— Discovered the excellent electrochemical behavior of nano-Sn,Fe
* Equal to SONY SnCo-C anode in capacity and rate capability
— GO for replacement of SnCo-C
« Doubles the volumetric capacity of carbon
— GO for replacement of carbon anode
— Need to understand role of carbon — what is LiC,?
— Found two synthesis methods for nano-Sn,Fe
« Mechanochemical method — GO
— Need to reduce first discharge excess capacity
« Solvothermal method — needs improvement

* Nano-silicon
— Formed by two different methods
* Nano-silicon formed from Al-Si alloy

— Unique morphology
— Preliminary electrochemical results look promising - GO

 Nano-silicon formed from Si10

— Lower capacity 20
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