Metal-Based High Capacity Li-Ion Anodes

M. Stanley Whittingham State University of New York at Binghamton May 15th, 2013

Project ID # ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 01-01-2011
- Project end date: 12-31-2014
- Percent complete: 50%

Budget

- Total project funding
 - DOE \$724,626
 - Contractor share: Personnel
- Funding received
 - FY12: 172k\$
 - FY13: 172k\$

Barriers

- Barriers addressed
 - Lower-cost
 - Higher volumetric capacity and
 - Abuse-tolerant safer anodes

Partners

- National Laboratories
 - Brookhaven; Argonne; Lawrence Berkeley
- Local Industry
 - Primet
- Academia
 - Other Anode Partners

Relevance and Objectives of Work

• The primary objectives of our work are to:

- Increase the volumetric capacity of the anode by a factor of two over today's carbons
 - 1.6 Ah/cc
- Increase the gravimetric capacity of the anode
 - \geq 500 Ah/kg
- Lower the cost of materials and approaches
- Be compatible with low cost layered oxide and phosphate cathodes and the associated electrolyte

• The relevance of our work is:

- Achieving the above objectives
 - Will increase the cell energy density by up to 50%.
 - Will lower the cost of tomorrow's batteries

Relevance: Milestones

- a) Determine the limitations to the electrochemical behavior of mechanochemical tin. Characterize these materials and determine their electrochemical behavior. (Sep. 12)
 - Completed. The nano-size tin meets the gravimetric capacity of the Sn-Co-C electrode. Ti reductant is superior to Al
- b) Determine the electrochemistry of a new synthetic nano-silicon material. (Sep. 12)
 - Completed
- c) Determine the reaction mechanism of the nano-Sn-Fe-C system.(May 13)
 - Ongoing. Carbon is an active element
- d) Identify an anode candidate having an energy density of 2 Ah/cc for at least 100 cycles. (Sept. 2013)
 - Ongoing

Approach and Strategy: Improved Anodes

- Place emphasis on low cost materials, tin and silicon
 - Study modified tin initially
 - Safer than silicon
 - 2 Li/Sn doubles capacity
 - Find several simple synthesis methods
 - Nano-amorphous tin
 - Need low cost components
 - Protect the nano-tin
 - From side reactions

High Cost

- Find a tin-based anode, that does not contain cobalt
 - Low cost materials
 - Low cost manufacturing method

Low Volumetric Capacity of Li-ion batteries

- Volumetric capacity of Li-ion batteries limited by carbon anode
- Find a material with double the volumetric capacity

• Low Safety and Abuse-tolerance

- Find an anode that reacts with lithium faster
 - Minimizes risk of dendrite formation
- Find an anode that reacts with lithium at 300-500 mV vs Li
 - Minimizes risk of dendrite formation
 - Allows for higher rate charging

- Method 1:
 - SnO reduced by \underline{Ti} and carbon with <u>hard</u> iron balls by mechanochemical methods
 - Use of iron grinding media results in formation of Sn_2Fe/C composite
 - As reaction time increases, tin phase becomes Sn_2Fe
 - If reaction too long, iron phase is gradually formed after all Sn is converted to Sn_2Fe
 - Electrochemical behavior determined
 - The capacity retention has been improved compared with our previous results.
 - Good electrochemistry associated with reaction time (e.g. 10 hours better than 20 hours).

- Use of iron grinding media results in formation of Sn₂Fe/C composite
 - Capacity retention is as good as in Ti-reduction, but the capacity is lower (~390 mAh/g).
- SnO reduced by Al and carbon by mechanochemical methods

- Method 1:
 - SnO reduced by Ti and carbon by mechanochemical methods
 - Titanium found to be most effective reducing agent
 - Results in formation of Sn₂Fe/C composite
 - Good electrochemistry found

Stan Whittingham SUNY at Binghamton

Increasing tin content reduces capacity and retention Electrochemical studies of Sn₅Fe compound

Stan Whittingham SUNY at Binghamton

Collaboration with CNF at Brookhaven National Laboratory

Stan Whittingham SUNY at Binghamton

SnFe Capacity/Rate Capability surpasses present commercial SnCo-C

Lithium removal – discharge of cell

Lithium insertion – charging of cell

Milestone (c) underway: Reaction mechanism of nano-Sn-Fe-C

Stan Whittingham SUNY at Binghamton

Milestone (c) being achieved using method 1: Volumetric energy density exceeds carbon

- Gravimetric capacity:
 - Measured reversible capacity of 600 Ah/kg of total composite
 - Sn₂Fe contributes 804 Ah/kg of Sn₂Fe
 - Remainder contributed by carbon
 - Must be C_2Li
 - 1100 Ah/kg
 - Theoretical capacity of 760 Ah/kg for total composite
 - If C_6 Li then theoretical capacity is 490 Ah/kg
- Volumetric capacity:
 - Approaches 1.5 Ah/cc, based on above value of 600 Ah/kg

- Method 2:
 - FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 °C
 - Product is Sn_2Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin

(left) XRD patterns of (A) Solvothermally formed Fe-Sn; (B) Planetary ball-milled (pBM) Sn-Fe-C composite; (C) High-energy ball-milled (HEBM) Sn-Fe-C composite. Sn metal phase in the solvothermally formed material disappears after high-energy milling with graphite. (right) Electrochemical cycling of this Sn-Fe alloy in two voltage windows; no grinding with carbon. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter. 13

• Method 2:

- FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 °C
 - Product is Sn_2Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin
 - Sn removed by grinding with carbon
 - Stable capacity can be obtained when high-energy ball-milling is utilized
 - But capacity drops to 400 mAh/g

(left) Original cycling of solvothermal Sn_2Fe , and (right) cycling of this Sn-Fe alloy after ball milling (planetary and high energy) in two voltage windows. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter.

- Method 1:
 - Si/MgO/graphite (SMOG) composite was synthesized by a two-step process high energy ball-milling reduced by Mg and carbon by mechanochemical methods
 - First step: SiO reduced by Mg by high energy ball-milling
 - Second step: Product of 1st step high-energy ball milled with carbon
 - Electrochemical behavior determined

Rate capability of SMOG electrode between 0.01 V and 1.5 V. (a) capacity on cycling at different current densities; (b) cycling curves at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm^2 . The first cycle current density was 0.3 mA/cm².

- Method 2:
 - Etching Al-Si alloy
 - Gives porous Si with 3D network
 - XRD data yields a lattice parameter larger than pure Si
 - EDS \sim 5 wt. % Al uniformly distributed in this material

Milestone (b) completed : Nanosilicon synthesis and electrochemical behavior

- Electrochemical behavior determined
 - This porous nanosilicon material shows high lithium capacity
 - Breaking the spheres enhances the contact between silicon and carbon, improving capacity retention

broken Si spheres (b-Si)

Stan Whittingham

SUNY at Binghamton

Si sphere (s-Si)

Electrochemical cycling of broken Si spheres (b-Si) and Si sphere (s-Si) materials at 0.5 mA/cm^2 between $0.01 \text{ V} \sim 1.5 \text{ V}$. First cycle current density was 0.3 mA/cm^2 . The electrodes were made of Si, carbon black additive and binder in a weight ratio of 70:20:10

Collaboration and Coordination with other Institutions

Brookhaven National Laboratory

- Provided samples of the new Sn_5Fe compound
 - Electrochemical studies completed
- Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function) and XAS (X-ray absorption) studies

Lawrence Berkeley National Laboratory

- Working with BATT anode team comparing tin and silicon materials
 - Similar challenges, such as 1st cycle loss, being addressed
- Umicore nanograin Si material for Si baseline standard
- Primet Precision (Ithaca Co)
 - Collaboration underway on nanosizing materials (Nano-scissoringTM)
- NYBEST (New York Battery and Energy Storage Technology Consortium
 - Building collaborations between Industry, Academia, and Government

Future Work

• Nano-Sn₂Fe

- Optimize synthesis methods
 - Mechanochemical method
 - Find viable source of iron for scale-up, that maintains nano-size
 - Solvothermal method
 - Eliminate tin metal and oxide impurity
 - Increase capacity
 - Make GO/NOGO decision
- Reduce first cycle loss
 - Find optimum carbon and titanium content
- Fully understand the reaction mechanism

• Nano-Si

- Investigate other reductants, such as titanium
- Reduce 1st cycle loss
- Improve cycling performance

Summary

• Nano-tin

- Discovered the excellent electrochemical behavior of nano- Sn_2Fe
 - Equal to SONY SnCo-C anode in capacity and rate capability
 - GO for replacement of SnCo-C
 - Doubles the volumetric capacity of carbon
 - GO for replacement of carbon anode
 - Need to understand role of carbon what is LiC_2 ?
- Found two synthesis methods for nano-Sn₂Fe
 - Mechanochemical method GO
 - Need to reduce first discharge excess capacity
 - Solvothermal method needs improvement

Nano-silicon

- Formed by two different methods
 - Nano-silicon formed from Al-Si alloy
 - Unique morphology
 - Preliminary electrochemical results look promising GO
 - Nano-silicon formed from SiO
 - Lower capacity