Metal-Based High Capacity Li-Ion Anodes

M. Stanley Whittingham State University of New York at Binghamton May 14th, 2012

Project ID # ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 01-01-2011
- Project end date: 12-31-2014
- Percent complete: 25%

Budget

- Total project funding
 - DOE \$724,626
 - Contractor share: Personnel
- Funding received
 - FY11: 172k\$
 - FT12: 172k\$

Barriers

- Barriers addressed
 - Lower-cost
 - Higher volumetric capacity and
 - Abuse-tolerant safer anodes

Partners

- National Laboratories
 - Brookhaven; Argonne; Lawrence Berkeley
- Local Industry
 - Primet
- Academia
 - Other Anode Partners

Objectives and Relevance of Work

• The primary objectives of our work are to:

- Increase the volumetric capacity of the anode by a factor of two over today's carbons
 - 1.6 Ah/cc
- Increase the gravimetric capacity of the anode
 - $\geq 500 \text{ Ah/kg}$
- Lower the cost of materials and approaches
- Be compatible with low cost layered oxide and phosphate cathodes and the associated electrolyte

• The relevance of our work is:

- Increasing the volumetric capacity of the anode by a factor of two will increase the cell energy density by up to 50%.
- Will lower the cost of tomorrow's batteries

Relevance: Milestones

- a) Synthesize nano-size tin materials by at least two different methods (Dec. 11)
 - Completed.
- b) Have the nano-size tin meet the gravimetric capacity of the Sn-Co-C electrode and exceed the volumetric capacity of the Conoco Philips CPG-8 graphite (Mar. 12)
 - Completed. The nano-size tin meets the gravimetric capacity of the Sn-Co-C electrode and exceeds the volumetric capacity of carbon.
- c) Determine the limitations to the electrochemical behavior of the mechanochemical tin. Characterize these materials and determine their electrochemical behavior. (Sep. 12)
 - Ongoing.
- d) Determine the electrochemistry of a new synthetic nano-silicon material. (Sep. 12)
 - Ongoing.

Approach and Strategy: Improved Anodes

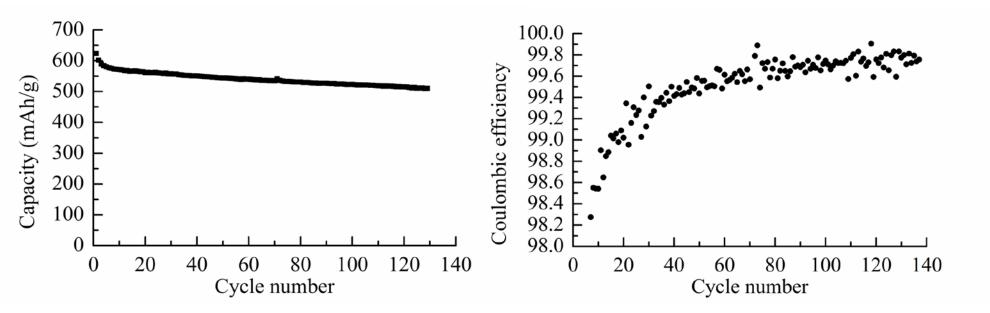
Stan Whittingham SUNY at Binghamton

- Place emphasis on low cost materials, tin and silicon
 - Study modified tin initially
 - Safer than silicon
 - 2 Li/Sn doubles capacity
 - Find several simple synthesis methods
 - Nano-amorphous tin
 - Need low cost components
 - Protect the nano-tin
 - From side-reactions

Technical Accomplishments: Barriers being Addressed

High Cost

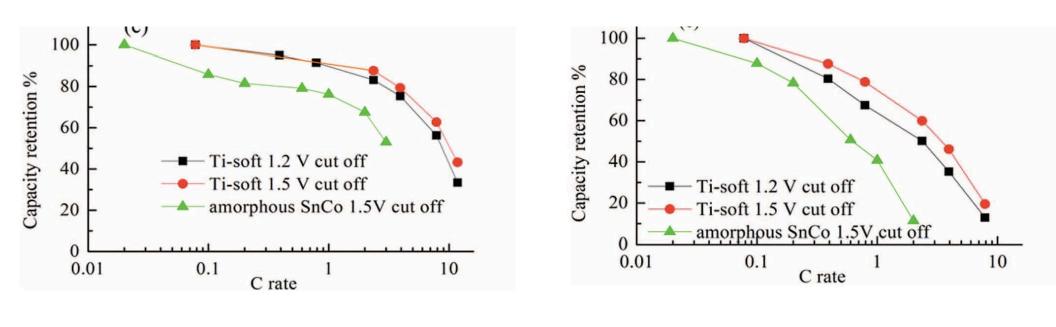
- Find a replacement tin anode for the expensive commercial SnCo-C
 - Low cost materials
 - Low cost manufacturing method

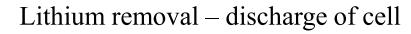

Low Volumetric Capacity of Li-ion batteries

- Volumetric capacity of Li-ion batteries limited by carbon anode
- Find a material with double the volumetric capacity

• Low Safety and Abuse-tolerance

- Find an anode that reacts with lithium faster
 - Minimizes risk of dendrite formation
- Find an anode that reacts with lithium at 300-500 mV vs Li
 - Minimizes risk of dendrite formation
 - Allows for higher rate charging

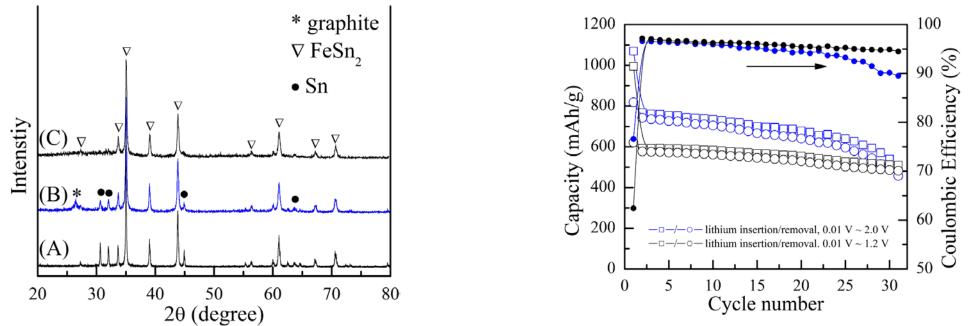

- Method 1:
 - SnO reduced by Ti (Al or Mg) and carbon by mechanochemical methods
 - Titanium found to be most effective reducing agent
 - Use of soft iron grinding media results in formation of Sn_2Fe/C composite
 - Material structurally characterized, 20-30 nm
 - Electrochemical behavior determined
 - Good electrochemistry found on un-optimized material, as shown below.



Milestone (b) achieved using method 1: Tin-carbon electrode + Fe as Sn₂Fe

Stan Whittingham SUNY at Binghamton

1. SnFe Capacity/Rate Capability surpasses SnCo-C

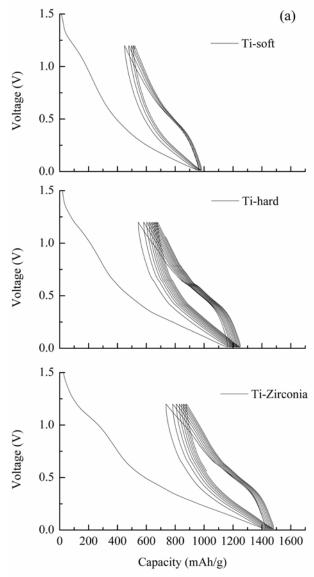


Lithium insertion – charging of cell

2. Volumetric capacity exceeds that of carbon: 2.2 Ah/cc vs < 1.0 Ah/cc

8

- Method 2:
 - FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 °C
 - Product is Sn_2Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin
 - Sn removed by grinding with carbon
 - Grinding with carbon improves efficiency, but capacity drops to 500 (expts underway)



(left) XRD patterns of (A) Solvothermally formed Fe-Sn; (B) Planetary ball-milled (pBM) Sn-Fe-C composite; (C) High-energy ball-milled (HEBM) Sn-Fe-C composite. Sn metal phase in the solvothermally formed material disappears after high-energy milling with graphite. (right) Electrochemical cycling of this Sn-Fe alloy in two voltage windows; no grinding with carbon. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter.

Milestone (c) underway: Electrochemical behavior of nano-tin

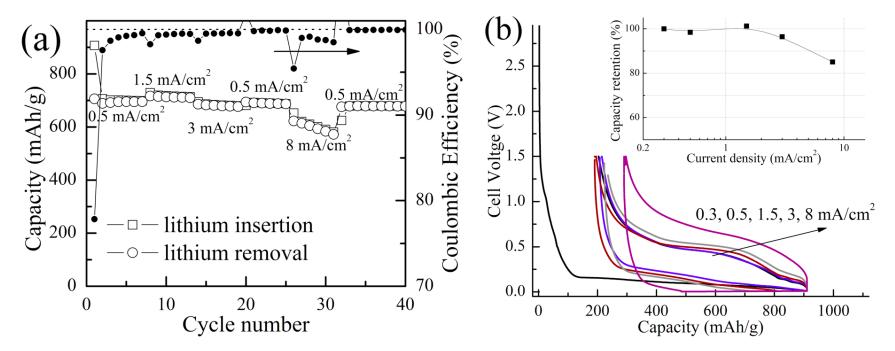
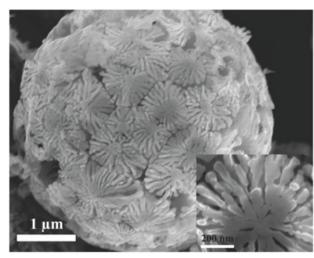
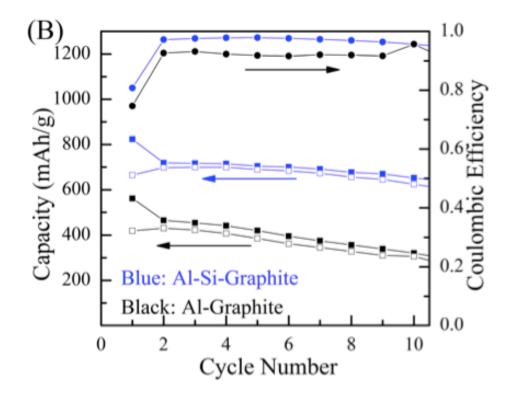

- Determine the limitations to the electrochemical behavior of the mechanochemical tin.
 - Tin reductant gave superior electrochemistry
 - Superior to Mg and Al
 - First cycle loss identified as an issue
 - Loss increases with tin metal content,
 - Loss also associated with carbon content
 - Plan to study various carbon contents
 - Determine minimum content

Figure: Cycling of nano-tin using Ti as reductant Ti-soft used soft iron grinding media Ti-hard used hard iron grinding media Ti-zirconia used zirconia grinding media


Milestone (d) underway: Nano-size silicon material synthesized


- Method 1:
 - Si/MgO/graphite (SMOG) composite was synthesized by a two-step process high energy ball-milling reduced by Mg and carbon by mechanochemical methods
 - First step: SiO reduced by Mg by high energy ball-milling.
 - Second step: Product of 1st step high-energy ball milled with carbon
 - Electrochemical behavior determined

Rate capability of SMOG electrode between 0.01 V and 1.5 V. (a) capacity on cycling at different current densities; (b) cycling curves at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm². The first cycle current density was 0.3 mA/cm².

- Using low cost engine-block Al-Si alloy
 - Determined the electrochemistry
- Nano-size changes properties and improves electrochemistry of Al:
 - Al dissolves silicon when nano-size (no solubility in bulk)
 - Increases capacity by > 50%
 - Improves capacity retention; loss reduced by a factor of 2
 - Coulombic efficiency improved
- Conclusion: Going nano helps
- Next step
 - Test nano-Si, after Al leached out

Collaboration and Coordination with other Institutions

Brookhaven National Laboratory

- Provided samples of the new Sn_5Fe compound
 - Electrochemical studies underway

Lawrence Berkeley National Laboratory

- Working with BATT anode team comparing tin and silicon materials
 - Similar challenges, such as 1st cycle loss, being addressed

• Primet Precision (Ithaca Co)

- Collaboration underway on nanosizing materials (Nano-scissoringTM)
- NYBEST (New York Battery and Energy Storage Technology Consortium
 - Building collaborations between Industry, Academia, and Government

Future Work

• Nano-Sn₂Fe

- Optimize synthesis methods
 - Mechanochemical method
 - Find viable source of iron for scale-up, that maintains nano-size
 - Determine optimum level of titanium reductant
 - Solvothermal method
 - Eliminate tin metal impurity
 - Increase capacity
- Reduce first cycle loss
 - Find optimum carbon content

• Nano-Si

- Investigate other reductants, such as titanium
- Reduce 1st cycle loss

Summary

• Nano-tin

- Discovered the excellent electrochemical behavior of nano- Sn_2Fe
 - Equal to SONY SnCo-C anode in capacity and rate capability
 - GO for replacement of SnCo-C
 - Doubles the volumetric capacity of carbon
 - GO for replacement of carbon anode
- Found two synthesis methods for nano- Sn_2Fe
 - Mechanochemical method GO
 - Solvothermal method needs improvement

Nano-silicon

- Nano-silicon formed by Mg reduction of SiO in the presence of carbon
 - Preliminary electrochemical results look promising GO
- Common Al-Si engine-block alloy evaluated as nano-metal anode
 - Nano-Al, with Si doping, much superior to Si-free nano-Al
 - Nano-Si, after Al removal, shows unique morphology
 - Electrochemical behavior being evaluated