

Medium and Heavy Duty Vehicle and Engine Testing

2010 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Matthew Thornton, NREL

June 9th 2010

Project ID# VSS034

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Barriers

Start date: FY02Hardware MaintenanceEnd date: on goingData Acquisition UpgradesPercent complete: on goingChanging Emissions Regulations

Budget

Partners

Each project funded independently through DOE R&D programs or work for others projects DOE Vehicle Technologies Program and work for others partners

Objectives

Operate and maintain a medium-duty and heavy-duty vehicle and engine dynamometer test facility for evaluating the performance, fuel economy, and emissions impacts of bio-fuels and electric and hybrid electric powertrains.

Approach - Chassis Dynamometer Test Cell

Test Range: 8,000–80,000 lb (Class 3-8)

- Twin 40" rolls (adjustable wheelbase)
- 380 hp DC motor

Features

- Programmable driver's aid
- Electrical / mechanical inertia simulation
- Augmented braking
- Grade simulation
- Automated warm-up & coast-downs

Data Acquisition

- Regulated emissions measurement for 2010 HD on-road engine technology (2007 CFR)
- High accuracy (+/- 0.5% reading) fuel metering

Approach - DC Engine Dynamometer Test Cell

DC Dynamometer (400 hp/300kw)

- Transient federal test procedure (FTP)
- Programmable steady state modal testing

Data Acquisition

- High accuracy fuel metering
- 24 channel high speed combustion analysis (in-cylinder pressure, needle lift)

Air Handling

- Meets 2010 HD on-road requirement (2007 CFR, including part 1065)
- Metered, conditioned intake and dilution air
- Flexible full-scale CVS system
- Altitude simulation (sea level to mile high)
- Air handling system capable of sea level transient operation

Approach - AC Engine Dynamometer Test Cell

AC Dynamometer (75 hp/ 56 kW)

- Programmable steady state testing
- Dynamometer speed up to 6500 rpm

Dynamometer Control and Data

Acquisition

- Sakor dynamometer controller
- Drivven engine controller (provides flexible engine control)
- AVL IndiModul high speed DAQ and combustion analysis

Fuel and Air Handling

- High accuracy critical orifice system for air flow control and measurement
- Customer designed high pressure fuel handling system providing fuel pressure up to 6000 psi, compatible for any bio-fuels

Approach- On-Road Emissions Measurement

Portable Emissions Measurement System (PEMS) Continuous Measurement of CO, NO, NO₂, THC, CO₂ & O₂

Ambient temperature, relative humidity, global positioning satellite (GPS) receiver, vehicle interface

Approach - Emissions Measurement

Continuous gaseous regulated

emissions measurement

- Horiba Mexa 7000 Emissions Bench
- Sensors-SEMTECH mobile emission analyzer
- CAI emission bench
- Pierburg emission bench

Non-regulated emissions measurement

- Fourier Transform Infrared (FT-IR) spectrometer
 - Unregulated HCs and aldehydes
 emissions measurement
- TSI Fast Mobility Particle Sizer (FMPS)
 - 5.6 to 560 nm particles
 - Continuous sampling up to 1Hz
 - Heated dilution system
- DNPH Cartridges Sampling and HPLC Analysis
 - Áldehydes/ Ketone
- 2010 level gravimetric PM measurement

Approach – Fuel Storage, Blending and PM Measurement

Fuel storage (48 drum) and blending Clean room for sample handling, storage, and gravimetric PM measurement

Other fuel and emission analysis equipments available -- GC-MS, IQT, HPLC

Accomplishments - Single Cylinder SIDI Engine Set-up

Engine Geometry

- Converted from GM LNF SIDI engine
- 86 × 86 mm, 9.2 CR--Higher CR pistons available

Fully Designed for Bio-fuels and Advanced Combustion Study

- P and T measurement and control
 - Spark plug and cylinder head integrated pressure transducer
 - Intake, exhaust, and fuel rail pressure measurement with Kistler transducers
 - Independent intake air, engine oil and coolant temperature control
- Fuel cart- 6000 psi
 - Compatible with any bio-fuels
- Drivven engine controller
 - Flexible fuel injection timing, spark timing, fuel pressure, and cam-phaser control
- Dedicated critical orifice air flow system
 - Accurate air flow measurement and control

11

Accomplishment - Evaluated Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric (PHEV) School Bus

HEVs add a disconnect between engine and vehicle operation PHEVs add two more complexities

- Fuel and electricity consumption
- Performance dependence on distance

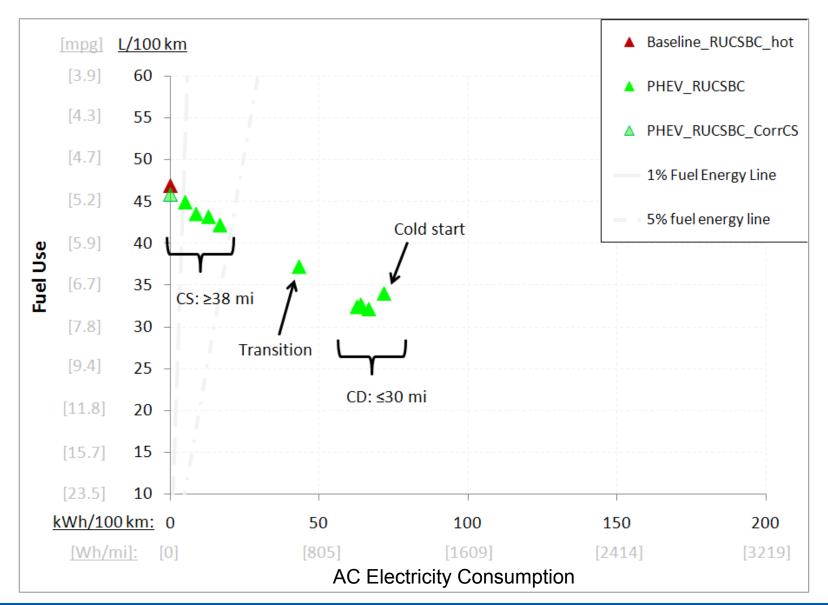
Buses tested in this study (both 72 passenger, DPF equipped)

Baseline conventional: 2008 Bluebird

- 7.2 L Caterpillar Engine: 261 kW (350 hp)
- Test mass: 24,550 lbs

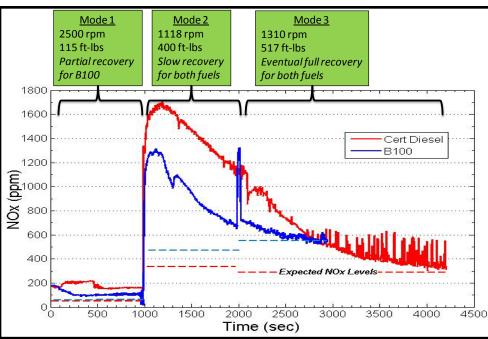
PHEV: 2007 IC Corp./Enova

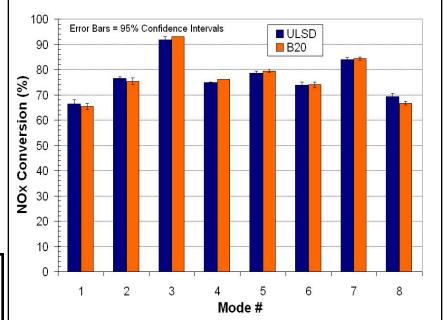
- 6.4 L MAXXFORCE Engine: 149 kW (200 hp)
- Electric induction motor: 25/80 kW (cont./peak)
- 370 V Li-ion battery pack
- Test mass: 27,850 lbs


HEV = Hybrid electric vehicle; PHEV = Plug-in HEV

Accomplishments – PHEV School Bus Test Results, School Bus Cycle (RUCSBC)

Accomplishments – PHEV School Bus Testing Conclusions


PHEV technology can save a significant amount of fuel


- Savings magnitude depends on both driving type and distance between charging
- Low PM emissions for diesel particulate filter (DPF)-equipped busses (≤0.01 g/mi)
- Improvement opportunities for tested PHEV school bus for fuel and emissions benefit
 - Implement a lower-NOx engine calibration
 - Improve CS (HEV) mode implementation (further reduce Knox and fuel use)

Accomplishments - Evaluated Urea SCR System on ISB Engine

- Retrofitted 2002 ISB with Fe-zeolite SCR
- Measure Knox reduction of system with ULSD and B20
- No difference in Knox reduction performance of B20

Significantly less HC inhibition for B100

- Lower engine out HC emissions
- Quicker recovery to steady-state
 Knox conversion after increasing
 temperature

Summary

Approach:

- Chassis dynamometer
- DC engine dynamometer
- AC engine dynamometer
- On-road emissions Measurement
- Emissions Measurement
- Fuel storage and blending

Accomplishments:

- Single cylinder SIDI engine set-up
- Evaluated Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric (PHEV) School Bus
- Evaluated Urea SCR System on ISB

ReFUEL

Laboratory 7