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Skutterudite: a CoAs3 mineral found near Skutterud, Norway, in 1845, and 
compounds with the same crystal structure (body-centered cubic, Im3, Oftedal, I. 
(1928): Zeitschrift für Kristallographie 66: 517-546) are known as 
“skutterudites”

W. Jeitschko, D. J. Braun, Acta Crystallogr. 1977, B33, 3401: Filled Skutterudite Crystal Structure for LaFe4P12.

Filled Skutterudites: Technologically Important 
and Scientifically Fascinating Materials
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Fracture and Failure in Ceramics : Battling Flaws

Fracture toughness KIC =Yσ√a·π . 
Mode I fracture Y is a crack shape factor and is larger for surface and edge cracks. 

Small Size Range - Allowable Stress vs. Flaw Size
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Large Size Range - Allowable Stress vs. Flaw Size
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1) http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Mechanical/FractureToughness.htm
2) V. Ravi, S. Firdosy, T. Caillat, B. Lerch, A. Calamino, R. Pawlik, M. Nathal, A. Sechrist, J. Buchhalter, and S. Nutt. Mechanical Properties of Thermoelectric     

Skutterudites, Proceedings of the American Institute of Physics Conference, Space Technology and Applications International Forum, (2008) February 10-14;

Albuquerque, NM.

1)

a is the crack length for edge cracks 

or one half crack length for internal cracks.

2)KIc = 1.1 - 2.2 Mpa·m1/2

http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Mechanical/FractureToughness.htm�


Strength-Limiting Flaw Classification For Brittle Materials.

Bi-Dimensional
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Φ = e-(σ/σο)^M

Fracture and Failure in Ceramics : A  Statistical Problem
The Weibull Modulus (M) is a 
measure of the scatter of data in 
a Weibull distribution

It is analogous to the standard 
deviation in a Gaussian 
distribution.

For ceramic fracture and failure 
M is a measure of the flaw 
population distribution.

Controlling fracture is 
controlling or eliminating the 
outliers in the flaw population



Thermal Shock Resistance Parameter For 

Thermoelectric Materials in Operation
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Of Concern is the Long Term Survival of the TE Legs Under Normal 

Operating Conditions. 
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Thermal shock resistance parameter (the larger the better)
Tensile stress or strength
Poisson’s ratio
Thermal conductivity
Coefficient of thermal expansion
Elastic modulus

Kingery, J. Am. Cer. Soc., 38:3-15 (1955).

aY
KIc

Tens =σ

KIc =
Y =
a= 

Fracture toughness
Crack shape factor
Griffith flaw size

Must seek to minimize c!Tensile Strength << Compressive Strength
Manage tensile stress for conservative design

Griffith Criterion



FEA finds that stress is particularly concentrated at 

edges and corners under    500 oC thermal gradient.

Thermal Stress Experienced by a TE Module During 

Operation.
The stresses calculated by FEA for a module are quite 

sensitive to: 

(a)CTE, E inputs

(b)Boundary Conditions (these 

presented here are very strenuous).

When these mismatched CTE’s (stainless

steel contacts and Al2O3 insulators are

accounted for tensile stresses in the legs

climb to greater than 300 MPa via FEA

modeling. 

1) O. M. Jadaan and A. A. Wereszczak, “Probabilistic Design Optimization and Reliability Assessment of High Temperature Thermoelectric Devices,” Ceramic 

Engineering and Science Proceedings, 29, [3], 157-172 (2008).



Elastic Modulus and Poisson’s ratio were 

determined by Resonant Ultrasound Spectroscopy 

(RUS).

Elastic Property Measurements



CLTE = 11.5 ppm to 450oC CLTE = 10.1 ppm

Sample type E  
(Gpa)

G 
(Gpa)

B
(Gpa)

ν VT
(x103 m/s)

VL
(x103 m/s)

n-type 135 55 80 0.20 2.69 4.50
p-type 123 50 73 0.20 2.56 4.29

Summary of Elastic Properties

n-type La0.05Ba0.07Yb0.08Co4.00Sb12.02

p-type Ce0.30Co2.57Fe1.43Sb11.98



An All-Alumina High-Temperature “3-Point” Bend Fixture Was Developed and 

Used For Strength Testing

This is actually a “Ball on Two Rollers” 3-Point Bend Fixture. The self aligning nature allows high sample throughput. 

The close contact between the ball and cylinder make for a virtually oxygen free environment .

Comparison of the outer-fiber tensile stress as a function of 3-point-bend
force for the analytical case (black), its finite element analysis (blue), and
the case for the bend fixture shown in Fig. 3 (red). Difference was small
(~3%), so the analytical expression was used to estimate failure stresses in
this study.



Preparation of  Filled  Skutterudites.

Induction melting of the 

elements. Sealed vessel 

required for n-type

The melt is annealed at 

750 oC for 1 week

Annealed charge was 

milled by HEBM and 

sieved to 60 µm

Diced by low speed

diamond saw 



Prototypical Graphite Die and to Create Test Specimens

SPS 

Sintering



• Edge type (1-D), extrinsic, typically a machining effect

– e.g., edge chipping or chamfering  (TE elements can be cast as cylinders)

• Surface type (2-D), can be extrinsic or intrinsic

– e.g., machining damage, reaction layer, oxidation layer

• Volume type (3-D), usually intrinsic

– e.g., pores, agglomerates, large grains, etc.

– Improvement in material processing will lessen their effect

Room Temperature Strength of Diced and NSS Test Coupons



The characteristic strength of skutterudites is twice that of the PbTe based 
materials with similar microstructures that we have tested. Samples prepared by 

SPS and cut parallel to pressing axis
J.R. Salvador et. al.  Philo. Mag. 89, 1517 (2009).

Strength as a Function of Temperature
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Results are for small scale 
reactions (60g) and ½ in. billets



~1 kg of Ce0.30Co2.52Fe1.48Sb12

(n-type)

25 25 160 10.6 154 17
200 14 156 6.7 148 20
300 15 154 9.6 147 16
400 15 139 6.4 130 25
500 15 143 8.8 135 17

(p-type)

25 20 135 24.2 132 8
200 14 133 10.8 127 21
300 15 133 15.0 129 11
400 15 138 28.4 136 7
500 15 147 13.4 142 12

|------- 2- parameter Weibull  -------| |-- Gaussian --|
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Incremental Improvement in Characteristic Strength

Results are for large scale (1.0 kg batches and 3.0 cm (80 g 

billets).



Volume-Type Flaw (SKN-3)
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N-Type
Polished Surface

Fracture Surface

P-Type

Fracture Surface

Polished Surface

Source of Persistently Lower Weibull Modulus in n-Type Materials?



Conclusions
 Demonstrated incremental improvement in the fracture strength of 

skutterudite materials by flaw mitigation.   Characteristic strengths for 
skutterudites are twice that of PbTe and Bi-Te based materials.

 Fracture strength of both n- and p-type skutterudites is nearly 
temperature independent and characteristic strength magnitude is 
encouraging from a durability standpoint. 

 Weibull modulus (increased uncertainty) of the n-type material still 
lags p-type due to the larger distribution of volume flaws (larger grain 
distribution).

 There is significant room for improvement in the control of 
microstructure by optimizing powder metallurgical techniques. 



Thank You !


