Materials for HCCI Engines

G. Muralidharan, Rick Battiste, Jim Bentley Materials Science and Technology Division Bruce Bunting Engineering Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN May 21, 2009

Project ID # pmp_07_govindarajan

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: March 2005
- Project end: September 2010
- Percent complete: 70%

Budget

- Total project funding Received
 - DOE 100%
- Funding Received in FY08: \$225k
 FY09: \$105k

Barriers

- Barriers Addressed
 - A. Cost of CIDI engines
 - B. Efficiency of heavy truck engines
- Targets
 - CIDI Engine efficiency of 45% by 2010
 - Cost of \$30/KW
 - Heavy duty engine efficiency of 55% by 2013
- Strategic goals addressed
 - Improve the efficiency of advanced vehicles through innovative materials solutions

Partners

• Lead: ORNL

Collaborators/Interactions

- Eaton Manufacturer of valves
- Carpenter Technologies-Materials Supplier

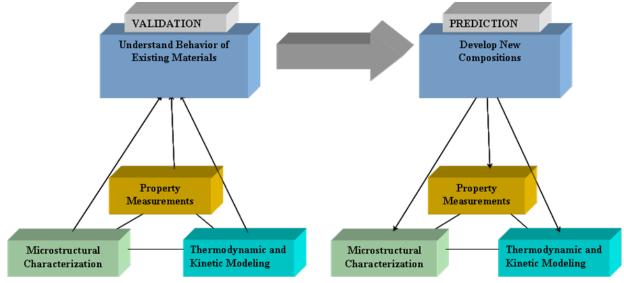
Objectives

- Develop cost-effective exhaust valve materials suitable for operating at higher temperatures (870°C vs. current 760°C) for use in advanced engine concepts
 - Test current exhaust valve material for fatigue performance at higher temperatures and compare performance with other suitable candidate materials
 - Identify materials (if any) with high temperature stability and fatigue properties appropriate for operation at the higher temperatures based on fatigue data obtained earlier

Milestones

FY2008

- Identify alloy composition/s that have the potential for appropriate performance in valve application at higher use temperatures (9/08)
 - Using fatigue tests on currently used alloys and other candidate alloys, several alloys with the potential for appropriate performance at higher temperatures have been identified (completed)


FY2009

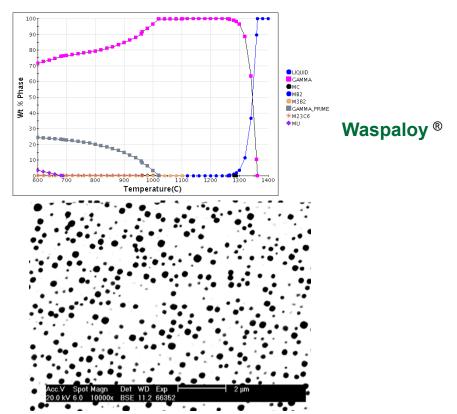
• Develop material with appropriate performance/cost ratio for advanced engines using computational design approach (9/09)

Approach

- Identify key material properties of interest for critical components
- Establish correlation between properties of interest and microstructural characteristics using existing alloys and identify desired microstructures
- Search composition space for alloys with desired microstructure and alloying element additions using validated computational models
- Reduce development time by selective testing of promising alloys with desired microstructure and cost

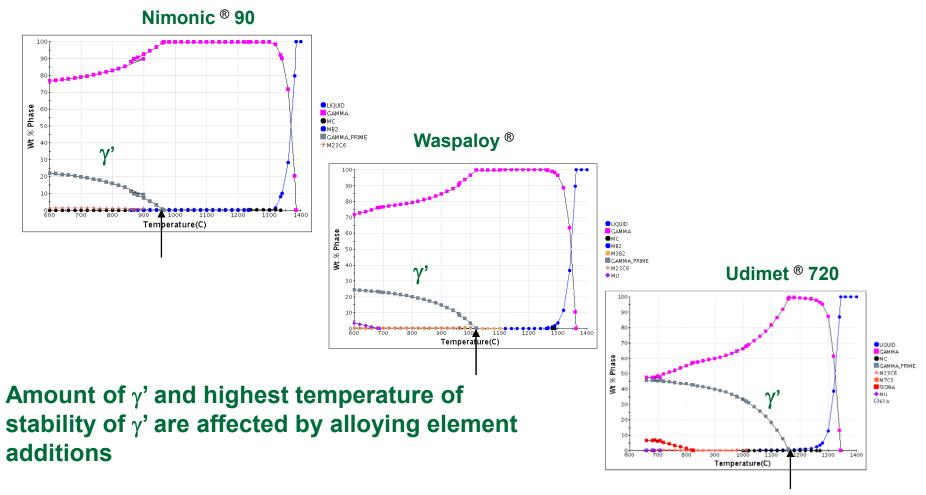
Technical Accomplishments: Identified Need for Valve Materials For High Temperature Applications

- Several components and corresponding materials issues were identified with help from industrial partners
 - Exhaust valves, exhaust manifolds, fuel injectors, air coolers
- Design/identification of advanced materials for exhaust valves was suggested as an area of high priority
- Property of interest is improved fatigue life at 870°C (from current 760°C)
 - Desired: 10⁸ cycles to failure in rotating beam fatigue tests at 35 Ksi

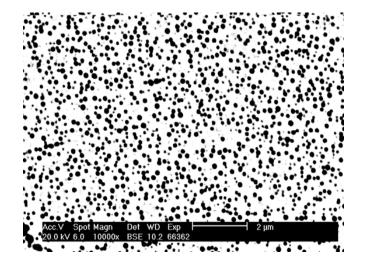

Summary Accomplishments/Progress/Results: Alloys with Potential to Perform at Higher Temperatures Have Been Identified

- Thermodynamic and kinetic modeling have been performed to correlate compositions with microstructure in selected alloys
- Microstructural characterization have been carried out to verify specific computational predictions
- High temperature fatigue properties using fully reversed fatigue tests have been obtained from alloys with well-defined compositions, heat-treatments, and microstructure
- Approximate relationship between rotating beam fatigue data (required by the industry) and fully reversed fatigue data has been developed
- Desired fatigue life in fully reversed fatigue tests has been quantified based on industrial requirements on rotating beam fatigue data
- Several commercial alloys with potential to perform under new service conditions have been identified

Selected Ni-based Alloys are Primarily Strengthened by γ ' Precipitates

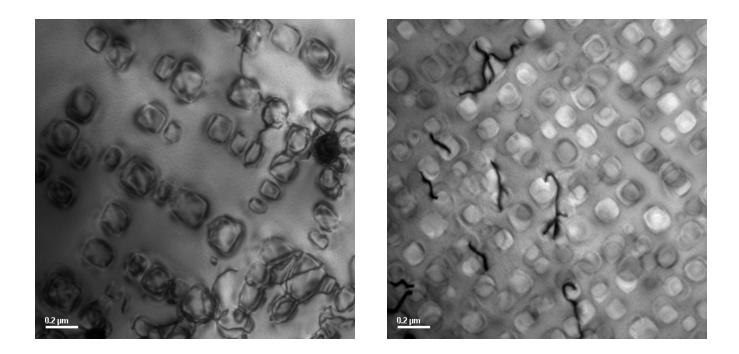

- Eight commercially available Ni-based alloys were down-selected (including IN 751 most popular current alloy)
- Selected Ni-base alloys are
 - austenitic
 - primarily strengthened by the precipitation of coherent intermetallic precipitates: γ'
 - Coarsening results in decrease in strength of alloys
 - Carbides (MC, $M_{23}C_6$) can also be present in alloys
 - Undesirable topological close packed phases (sigma, mu etc) may precipitate at certain temperatures

Back-scattered SEM Image showing γ^{\prime} Precipitates



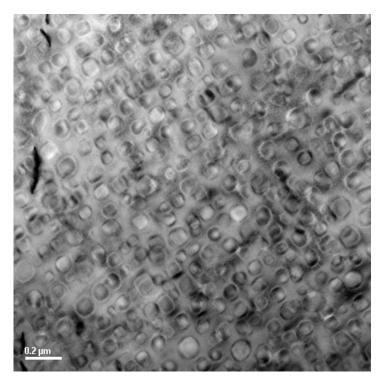
Computational Thermodynamic Modeling Predicts Correlation Between Composition and γ ' Contents

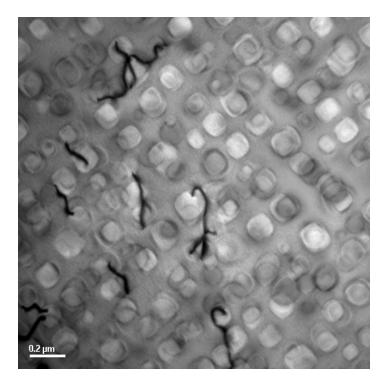
Scanning Electron Microscopy is Used to Estimate the Volume Fraction of Precipitates (Example: Waspaloy®)


Acc.V. Spot Magn Det WD Exp 20.0 kV 6.0 10000x BSE 11.2 66352

2.4 million cycles Time: 22 hours Average V_f =17.1% 55 million cycles Time: 509 Hours Average V_f =17.1%

Reasonable agreement with predicted value of γ '= 16.7 wt.%

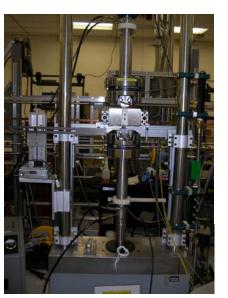

Transmission Electron Microscopy Allows Study of Size, Shape, and Distribution of Strengthening Precipitates


Nimonic[®] 90 (226 Hours) Udimet[®] 41 (181 Hours)

Calculations shows that Udimet[®] 41 should have a larger volume fraction of strengthening precipitates

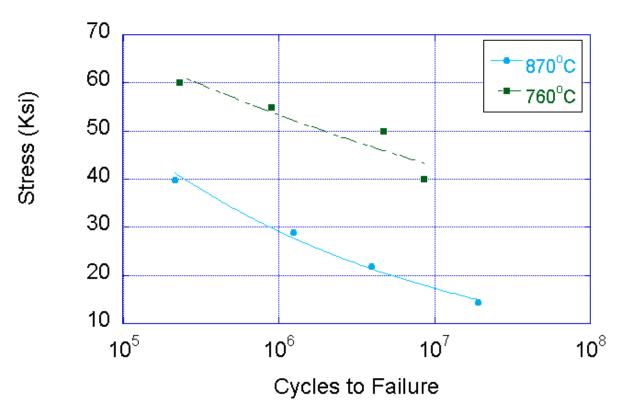
Coarsening Kinetics of Precipitates Can be Measured Using TEM micrographs

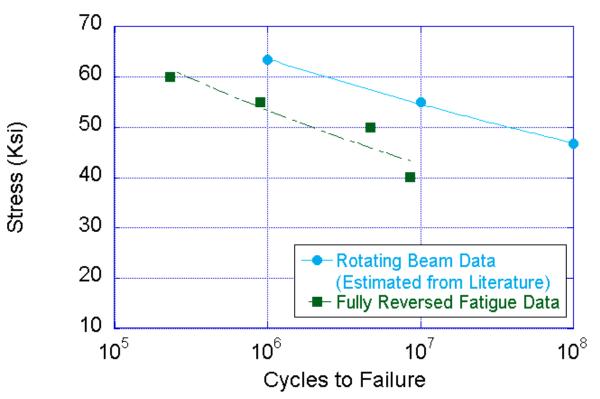
Udimet[®] 41 (27.2 hours)



Udimet[®] 41 (181 hours)

Fully Reversed Fatigue Tests are Being Carried out *in-situ* at 870°C

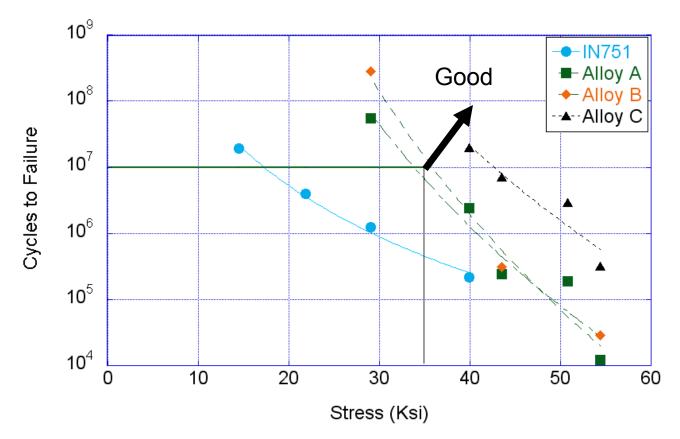

- Two types of fatigue tests are relevant to the study of high cycle fatigue of valve materials
 - Uniaxial, fully reversed fatigue
 - Rotating beam fatigue
- Fully reversed fatigue tests are being carried out at ORNL at the temperature of interest under load control at a frequency of about 30 Hz
- Stresses used are:
 - 21.8 (150) Ksi (MPa),
 - **29 (200)**,
 - 39.9 (275),
 - 43.5(300),
 - **50.8(350)**,
 - 54.4(375)



Fatigue Properties of IN 751 Have Been Measured at 760°C and 870°C using Fully Reversed Fatigue Tests

Fatigue properties of IN 751 at 760°C were measured using fully reversed fatigue tests to facilitate comparison with rotating beam data in literature and common in industrial practice

Fatigue Lives of IN751 at 760°C Measured Using Two Techniques Are Different

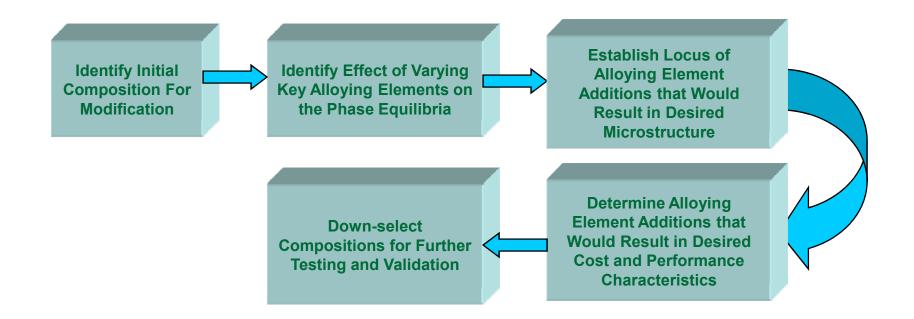


Conservative estimates show that cycles to failure in rotating beam data ~10 times life measured in fully reversed fatigue tests under the conditions used for testing at ORNL

*Literature data from US Patent # 6,372,181, M. G. Fahrmann, Gaylord D. Smith, INCO Alloys

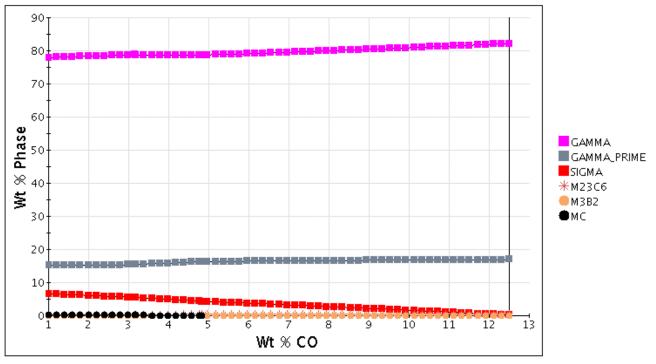
Alloys with the Potential for Operation at Higher Temperatures Have Been Identified

Alloys with minimum lifetime of 10⁷ cycles to failure at 35 Ksi in fully reversed fatigue tests are potential candidates



Why are New Alloys Necessary?

- New alloys may be required to
 - Achieve slightly improved performance when compared to existing alloys without must cost penalty or at decreased cost
 - Achieve desired performance with removal of strategic alloying element additions
 - Other factors such as processing ability are also important from manufacturing cost perspective
- Alloy development can be performed using existing alloys as a starting point


Example Methodology For New Alloy Development

Computational thermodynamic/kinetic modeling allows for rapid identification of new alloys with desired microstructure, and alloying element characteristics

Example Showing Effect of Replacing Iron with Cobalt on Phase Equilibria

T = 870.0C (Balance: FE)

Computational thermodynamic calculations using JMatPro show that replacement of iron with cobalt decreases amount of undesirable sigma phase (red square) at 870°C

Status of Development of New Alloys

- Computational modeling is on-going along several schemes to identify new alloy compositions with comparable/better properties without cost penalties
- Alloy compositions identified as capable of operation at higher temperatures will be used as a basis to develop new alloys with improved performance/cost ratio
- Selected alloys will be prepared in small quantities and microstructures will be studied
- Refinement of alloy compositions will be performed based upon microstructural observations

Accomplishments: A New Rotating Beam System Has Been Installed

- Data obtained on new alloys can be readily compared with industry requirements
- Rotational Speeds up to 10000 rpm are possible

Future Work

FY09

- Verify fatigue performance of identified alloys at higher temperature using rotating beam tests
- Identify one most suitable commercial alloy for higher temperature valve applications
- Develop one new alloy using computational modeling techniques with the potential for improved performance/cost ratio
- Prepare laboratory sized quantity of alloy and evaluate high temperature properties

FY10

- Complete rotating beam fatigue and/or fully reversed fatigue tests as required on new alloy
- Prepare appropriate sized heat of THE BEST suited alloy for testing in actual/simulated application

Summary

- Improvement in high temperature capability of exhaust valve materials is an enabler for future advanced engine concepts
- Targets for improvement are the fatigue properties and performance/cost ratio of exhaust valve materials at 870°C
- Correlations have been established between microstructure and fatigue properties
- Several alloys with potential for improved performance at the higher temperature have been identified and hypotheses regarding performance are being verified
- New alloy with improved performance/cost ratio will be developed using computational modeling techniques

