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Are the growing interests in alternative diesel fuels
Are the growing interests in alternative diesel fuels 
and advanced combustion techniques compatible?
and advanced combustion techniques compatible?
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Are advanced combustion techniques sensitive to
Are advanced combustion techniques sensitive to 
fuel composition?
fuel composition?

…it is almost certain that future, advanced combustion 
engine technologies will show a greater [performance and 

emissions] sensitivity to [fuel-property] variations… 
(section 4.7.1 of the FreedomCAR Multi-Year Program Plan) 

•	• Lack of direct control of combustion timingLack of direct control of combustion timing
–	 No spark initiation in most cases 
–	 Limited control with fuel injection timing (combustion strategy 

dependent) 
–	 Combustion is kinetically initiated 

•	• Traditional fuel ignition properties may not be sufficientTraditional fuel ignition properties may not be sufficient 
indicators of advanced combustion performanceindicators of advanced combustion performance
–	 Influence of “physical” vs. “chemical” cetane number 



Low temperature heat releaseLow temperature heat release

Reproduced from Christensen et al. 

Gasoline HCCIGasoline HCCI

Reproduced from Christensen et al. 

Diesel HCCIDiesel HCCI

With increasing temperature at constant pressure 
Non-Explosive → Explosive → Non-Explosive → Explosive 

Reproduced from Glassman, 1996


•• What is formedWhat is formed 
during LTHR?during LTHR?

•• Alternative fuelAlternative fuel 
differences?differences?



Experimental platform and fuel matrixExperimental platform and fuel matrix
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Fuels progressed from only LTHR at low CR to
Fuels progressed from only LTHR at low CR to 
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LTHR and HTHR at higher CR
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LTHR magnitude is dependent on CN and
LTHR magnitude is dependent on CN and 
equivalence ratio
equivalence ratio
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•	• LTHR magnitude trends with derivedLTHR magnitude trends with derived cetanecetane numbernumber
FT diesel-light cut > methyl decanoate > #2 diesel-light cut 

•	• MethylMethyl decanoatedecanoate LTHR likely overLTHR likely over--predicts LTHR ofpredicts LTHR of biodieselbiodiesel
–	 Aliphatic chain is responsible for LTHR, not methyl ester 
–	 Over 50% of soy-based biodiesel is comprised of species with multiple 

unsaturations 
–	 Unsaturated species exhibit less LTHR than saturated species 



FTIR analysis ofFTIR analysis of nn--heptaneheptane exhaust reveals
exhaust reveals 
CO andCO and aldehydesaldehydes are formed by LTHR
are formed by LTHR
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2,52,5 heptanedioneheptanedione identified inidentified in nn--heptane
heptane
exhaust condensate
exhaust condensate
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Conventional diesel and FT fuels show
Conventional diesel and FT fuels show 
trends similar totrends similar to nn--heptane
heptane
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species are formed by
species are formed by 
LTHR, consumed by
LTHR, consumed by 
main combustion event
main combustion event 
at higher CR
at higher CR

•• High MW oxygenated
High MW oxygenated 
species identified in
species identified in 
exhaust condensate
exhaust condensate 
– C7 to C15 straight-chain 

aldehydes 
– C9 to C12 straight-chain 


2-ketones

– C5 to C11 straight-chain 
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DecarboxylationDecarboxylation of methylof methyl decanoate
decanoate
produces COproduces CO22 during LTHR
during LTHR
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•• Comparable levels of CO and COComparable levels of CO and CO22 are formed by LTHRare formed by LTHR
– Temperatures are insufficient to oxidize CO to CO2

– CO2 is a product of decarboxylation
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LTHR reactions of aliphatic chain occur
LTHR reactions of aliphatic chain occur 
prior toprior to decarboxylation
decarboxylation
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Conclusions
Conclusions
•	• LTHR behavior of different fuels can be investigated in aLTHR behavior of different fuels can be investigated in a 

motored enginemotored engine
•	• LTHR magnitude trends withLTHR magnitude trends with cetanecetane numbernumber
•	• The oxidation taking place during LTHR produces partiallyThe oxidation taking place during LTHR produces partially 

oxidized species with only negligible amounts of COoxidized species with only negligible amounts of CO22
–	 High concentrations of CO and aldehydes 
–	 2,5-heptanedione, found in n-heptane exhaust condensate, can 

be closely linked to LTHR mechanism 
•	• If allowed to proceed through HTHR, partially oxidizedIf allowed to proceed through HTHR, partially oxidized 

species largely converted to COspecies largely converted to CO22
•	• COCO22 produced during LTHR from methylproduced during LTHR from methyl decanoatedecanoate is ais a 

product ofproduct of decarboxylationdecarboxylation
–	 Decarboxylation is undesirable from a soot-suppression standpoint 
–	 LTHR reactions with aliphatic chain can occur before


decarboxylation, incorporating additional oxygen into the

molecule
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