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Optimizing Low Temperature Diesel Combustion

January 2006 to December 2008 

•	 Overall goal — develop methods to further optimize and 
control LTC engines, with emphasis on diesel-fueled 
engines 

•	 Engine technologies to be considered include operation 
on LTC-D with transition to conventional Compression 
Ignition Direct Injection (CIDI) combustion at higher loads 
and starting conditions (“mixed-mode” operation) 

•	 Approach – develop and apply high fidelity computing and 
high-resolution engine experiments synergistically to 
create and apply advanced tools needed for low 
emissions engine design 
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Optimizing Low Temperature Diesel Combustion - Issues


Ignition too fast 

Enablers: 

Variable Geometry Sprays 
Fuel vaporization enhancement – FT fuels 

Combustion phasing 
Compression ratio control 
Enablers: Advanced controls 
Variable Valve Timing 
Two-stage turbo-charging 
Cooling/EGR 
Two stage combustion 
Fuel CN reduction 

Vaporization too slow 

Charge preparation 
Prevent wall fuel - unburned drops 

Advanced injection concepts 
Ultra-high injection pressure, small holes 
Narrow angle spray – geometry 
Multiple pulse injections 

Diesel LTC 



Low Temperature Diesel Combustion Emissions
Low Temperature Diesel Combustion Emissions

New regimes 

CO, HC, Soot and NOx


LTC-D design guidelines 
Assume homogeneous charge 
KIVA-CHEMKIN ERC n-heptane 
Park & Reitz CST (Submitted) 

Engine specifications 
- Bore x stroke : 82.0 x 90.4 mm 
- Compression ratio : 16.0:1 
- Displacement : 477cm3 

Calculation conditions

- Fuel amount : 20.0 mg

- Engine speed : 2,000 rpm

- EGR : 0-70% 

- Tin : 320-440K


12th DEER Conference August 24, 2006 



-30.0 

-21.0 

-27.0 

-27.0 

-1
2.

0 

-116.5 

-4.
5 

1 10
0 0. .

0 0

00.
.5 5

0.5 

14
55
.0 

22
88

00
.0 
0

10900
.0 
0

1630.0 

12
.6

 
24

.7 97
.4

 

10
. 

14
.0 

. 

09 . 

1630.0 

Task 1: Understanding of LTC-D & advanced model development 

1.1a LTC-D and premixed combustion models 
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Task 1: Understanding of LTC-D & advanced model development 

1.1a LTC-D and premixed combustion models 
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Task 1: Understanding of LTC-D & advanced model development 
1.1a LTC-D and premixed combustion models 

1.81.81.81.8

“Sweet IVC effect
 IVC : -142o ATDCIVC : -100o ATDCspot”
 1.51.51.51.5

E
qu

iv
al

en
ce

 ra
tio

E
qu

iv
al

en
ce

ra
tio

1.21.21.21.2

-11.54-11.54
SOCSOCSOCSOC
(ATDC, deg)(ATDC, deg)(ATDC, deg)(ATDC, deg)

0.90.90.90.9 0.5<Φ<0.95
 6.96. 292
0.70. 777

6.926.92
0.770.77

-5.38-5.38 -5.3-5 8.38Low eLow missione mission
0.6 window0.6 window -11.54-11.54

-17.69-17.69 0.60.6
-11.5-11. 454
-17.6-17. 969
-23.8-23. 585-23.85-23.85

-30.00-30.00 -30.0-30. 000
1600 1800 2000 2200 24001600 1800 2000 2200 2400 1600 181600 00 20000 0 20 200 2200 40018 200 2 2400

Peak cycle temperature (K)Peak cycle temperature (K) PeakP cyc clc e te empem ere ata uru e (Ke )eak y l t p r t r (K)
1.8 1.8 

“Sweet CO Required CO 

spot” 1.5 EGR 
1.5 IVC : -142o ATDC

IVC : -100o ATDC NO (g/kg-f) 

E
qu

iv
al

en
ce

 ra
tio

NO (g/kg-f) 

88.94 
1.2 66.83 

44.72 

0.9 
CO (g/kg-f) 

E
qu

iv
al

en
ce

 ra
tio

 

88.94 
1.2 66.83 

44.72 
22.61 
0.50 

0.9 50<EGR<60% CO (g/kg-f) 
EGR (%) 1728.2NO
 EGR (%) 1728.21384.5 NO
1040.90.6 

697.3 0.6
353.6 

10.0 
1600 1800 2000 2200 2400 

1600 1800 2000 2200 2400Peak cycle temperature (K) 12th DEER Conference August 24, 2006
Peak cycle temperature (K) 

1384.5 
1040.9 

697.3 
353.6 

10.0 

22.61 
0.50 



Task 1: Understanding of LTC-D & advanced model development 

1.1a LTC-D and premixed combustion models 


Required boost
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Task 2: Experimental investigation of LTC-D combustion control 

2.1 Use of Variable Valve Timing and Variable Geometry Sprays 

12th DEER Conference August 24, 2006 

Engine 

Caterpillar 3401 
SCOTE 
(Single Cylinder Oil 
Test Engine) 
- single cylinder 
- direct injection 
- 4 valve 

Bore x  
Stroke 137.2 mm x 165.1 mm 

Compression 
Ratio 16.1 : 1 

Displacement 2.44 liters 
Combustion 

Chamber Quiescent 

Piston Mexican Hat with 
Sharp Edge Crater 

Injection 
System 

Cat HEUI 300B 

• Multiple injections, PCCI – Hardy 
•IVA system – Nevin, Gonzalez, Sun 
• VGS two injector system – Weninger, Gonzalez 
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Task 2: Experimental investigation of LTC-D combustion control 

2.1 Use of Variable Valve Timing and Variable Geometry Sprays 
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Task 2: Experimental investigation of LTC-D combustion control 

2.1 Use of Variable Valve Timing and Variable Geometry Sprays 

Early injection – 0% EGR – light load - constant A/F ratio
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Factor Value 
Speed (rev/min)
 1737 
Fuel Flow (kg/hr) 3.0 (25% Load) 
EGR %
 40 
SOI (CA-BTDC)
 55 
IVC Timings (CA-BTDC) 143, 85 (Solenoid) 
Intake Temperature (K)
 305 

Task 2: Experimental investigation of LTC-D combustion control 

2.1 Use of Variable Valve Timing and Variable Geometry Sprays 

Low load

Early Injection

40% EGR
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Run  3  6  8  9  
Intake Pressure (kPa) 184.09 184.09 179.2637 172.3689 
Intake Flowrate (kg/min) 2.52 2.03 1.96 1.86 
IVC (CA-ATDC) -143 -85 -85 -85 
NOx (g/kW-hr) 0.8323 0.3387 0.2516 0.2392 
HC (g/kW-hr) 0.932 1.4232 1.7734 1.6085 
PM (g/kW-hr) 0.0103 0.0206 0.0201 0.018 
CO (g/kW-hr) 32.3173 27.8242 26.5183 23.051 
BSFC (g/kW-hr) 429.19 492.67 491.91 431.14 
Equivalence Ratio Φ 0.265 0.2886 0.298 0.3391 



Summary and Conclusions


Task 1: Fundamental understanding of LTC-D and advanced model 
development 

1.1 Formulation of combustion models and reaction mechanisms 
1.1a LTC-D and premixed combustion models – Reitz  
Idealized HCCI emission characteristics reveal a low emission window 

(lower than 10 g/kg-f CO, 0.5 g/kg-g NO and almost soot-less) 
“Sweet spot” operation IVC=100o ATDC- 0.6<Φ<0.95, 50<EGR<60%, 0.25<Pin<0.3 

1.1b Experimental verification measurements of species composition in an optical LTC-D 
engine – Sanders 

Fiber-optic access to metal engine tested successfully 
Acquired temperature, H2O mole fraction histories for 17 engine operating conditions 

1.2 Formulation of turbulence and mixing models for LTC-D 
1.2a Large Eddy Simulation Models for Mixing in Engine Applications – Rutland 
LES explains cyclic variability due to intake flow and fuel vaporization unsteadiness 

1.2b Fine-scale Mixing Measurements of Gas and Spray Jets in Engines – Ghandhi 
Optical system designed to achieve high resolution scalar dissipation rate 
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measurements 
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Summary and Conclusions


Task 2: Experimental investigation of LTC-D combustion control concepts 
2.1 Use of Variable Valve Timing and Variable Geometry Sprays for mixing and combustion 

control in a Heavy Duty LTC-D engine – Reitz  
Successful implementation of VVA system – combustion phasing control (~ 10 CA deg) 
Two injector variable geometry spray concept ready for testing 

2.2 Exploring injection and fuel effects on mixing and combustion regimes 
in a High Speed DI LTC-D engine – Foster  
New single cylinder Diesel HCCI/LTC laboratory commissioned 
Initiated exploration of LTC conditions with high EGR rate (> 55%) 
Demonstrated emissions results consistent with expected trends 
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Summary and Conclusions


Task 3: Application of detailed models for Optimization of LTC-D 
combustion and emissions 

3.1 Optimization of HD engine piston bowl geometry using GA-CFD with detailed chemistry 
and experimental validation – Reitz  
High load bowl geometry optimization in progress 

3.2 Investigation of optimal spray characteristics 
for HSDI LTC-D combustion – Reitz  

Low and high injection pressure sprays, and multi-hole

nozzle arrangements are being explored for optimal charge

preparation

Methodology established for evaluating spray configurations


3.3 Investigation of improved mixing strategies using early injection and LES – Rutland  
CHEMKIN speed up technique 'DOLFA' implemented into 

KIVA-3V ERC and applied to achieve a 3~4 X speed up in full 

engine combustion simulations.

Grid sensitivity study performed using LES.
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LES resolves finer geometric details in engine than RANS with increased resolution 



Summary and Conclusions


Task 4: Impact of heat transfer and spray impingement on LTC-D 
combustion 

4.1 Thermal analysis of LTC-D engines using detailed CFD coupled with 3-D metal component 
heat conduction – Reitz  
Wall heat transfer under LTC conditions being studied. 
Effect of wall impingement model on film formation is being assessed for low and high 
pressure sprays with early injection 

4.2 Experimental measurements of piston temperature and heat flux for LTC-D combustion 
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analysis – Ghandhi 
A linkage system is being designed to acquired piston 
temperature and heat flux daa in Caterpillar SCOTE 



Summary and Conclusions


Task 5: Transient engine control with mixed-mode combustion 
5.1 Multi-cylinder HSDI engine control strategies with mixed-mode combustion regime 

transitions – Foster  
Transient engine test cell has been installed with:

1.9L Common Rail Direct Injection HSDI diesel engine 

close coupled DOC and a DOC-DPF exhaust aftertreatment system. 

Low inertia dynamometer system with a bandwidth of 20 Hz.

Dynamometer control and data acquisition system 

Fast NOx and HC analyzers, response time (< 4ms). 

Heated emission bench, Smoke meter, Combustion noise. 


5.2 Engine system analysis and optimization with mixed-mode 
combustion regime transitions - Rutland 
Engine system level simulation tool enhanced by validating 

emission models with experimental data from LTC-Diesel engine

Effect of different actuators on emissions evaluated during transients

GT-Power model of 1.9L four-cylinder HSDI turbocharged engine 

replicating experimental facility of Task 5.1 has been built
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