2013 DOE Vehicle Technologies Program Review

Look-ahead Driver Feedback and Powertrain Management

Principal Investigator: Rajeev Verma Eaton Corporation

> Project ID: VSS087 16 May 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Overview

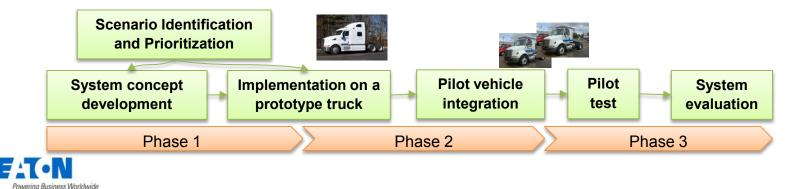
Timeline

- Start: 10/2011
- Finish: 9/2014
- 50% complete

Budget

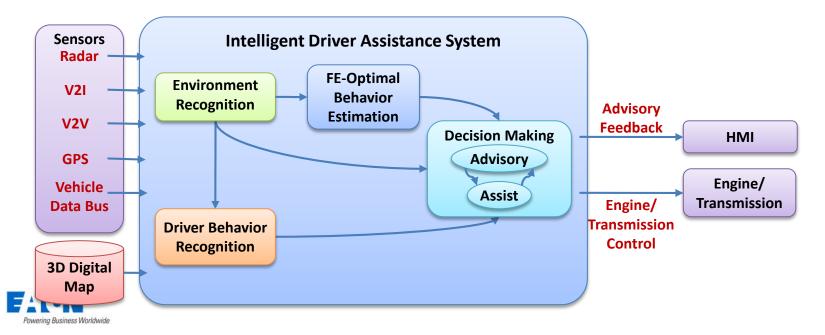
- Total project funding
 - DOE: \$914k
 - Cost Share: \$238k
- Phase 1:10/2011-1/2013 -\$367k (DoE)
- Phase 2:1/2013-1/2014 \$308k (DoE)
- Phase 3: 1/2014-9/2014 \$241 (DoE)

Barriers


- Driver acceptance
- Safety concerns
- Cost effectiveness

Subcontractors

- UMTRI
 - Driver interface, pilot test
- ORNL:
 - Tech consulting & evaluation
- Con-Way Freight
 - End user


Relevance

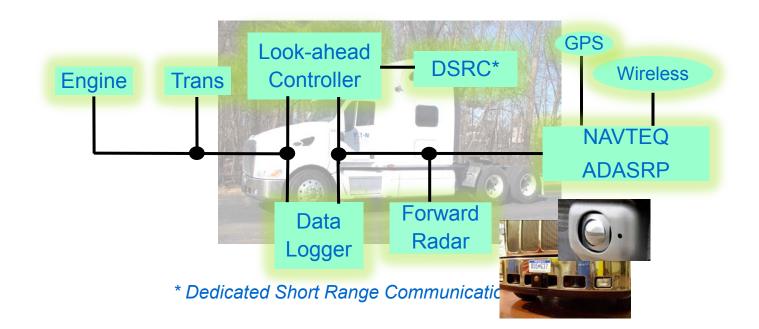
- Overall Project Objective
 - <u>Develop</u> and <u>demonstrate</u> on real vehicles a <u>driver assistance technology</u> to reduce <u>commercial fleet</u> average fuel consumption by at least <u>2%</u>
- Phase 1 Goals
 - Develop functional requirement specifications
 - Identify driver scenarios that impacts fuel consumption the most
 - Develop feedback strategy for target scenarios
 - Develop candidate driver interface and scenarios for driving simulator workload study
- Phase 2 Goals
 - Perform driving simulator study
 - Finalize HMI display and DAS
 - Pilot vehicle integration
- Phase 3 Goals
 - Pilot test
 - System evaluation

Approach

- Built upon existing and next-gen sensor and information technology
 - Will assess the impact of various options and their commercialization potential
- Scenario-specific feedback strategy
 - Leverage over 600k miles of naturalistic driving data from a recent DoT study
 - Separate environment caused inefficiency from driver caused inefficiency
- A combination of powertrain control and advisory feedback
 - Maximize fuel saving potential with minimum distraction

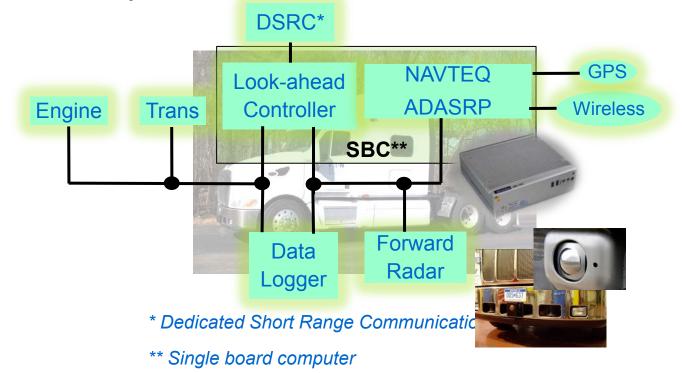
Key Milestones in Phase I

Month/Year	Milestone or Go/No-go Decision
1/2012	Milestone: Decide on target driving scenarios for fuel consumption impact analysis
3/2012	Milestone: Completion of look-ahead controller hardware design
6/2012	Milestone: Identify and prioritize the driving scenarios that have the most impact on fuel consumption
9/2012	Milestone: Completion of functional requirement specifications development
12/2012	Milestone: Completion of the development of driver interface candidates and the simulation study plan
12/2012	Go/No-go: Demonstrate through simulation the feasibility of the technology and the target fuel economy improvement

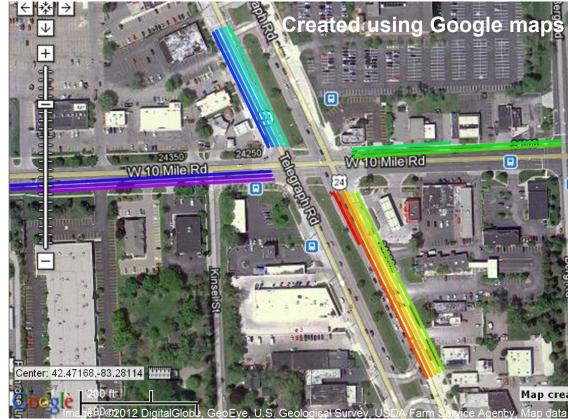

Key Milestones in Phase II

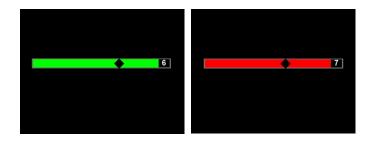
Month/Year	Milestone or Go/No-go Decision
6/2013	Milestone: Perform driving simulator study and down select Human-to-machine Interface (HMI)
6/2013	Milestone: In-vehicle HMI Algorithm and Hardware Development
6/2013	Milestone: Data Acquisition System Integration
11/2013	Milestone: System Integration and Validation on the Prototype Vehicle
12/2013	Milestone: Pilot Test Planning
12/2013	Go/No-go: Pilot Test Vehicle Preparation
12/2013	Go/No-go: System functional on the test vehicle

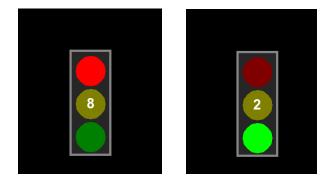
- Task 2.1: Voice-of-customer collection and functional requirements development
 - VOC collection completed with 2 major trucking fleets
 - Functional specification document completed
- Task 2.2: High fuel-consumption impact scenario identification
 - Driving scenarios for system engagement finalized

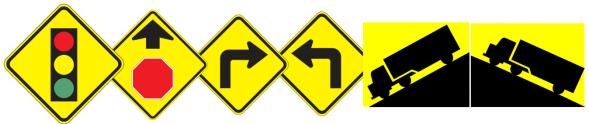


- Task 3.1: Look-ahead System Development
 - Target platform is a Single Board Computer
 - DSRC devices (for V2V and V2I communication) integrated with the system and tested on Mi V2I test-bed


- Task 3.1: Look-ahead System Development
 - Target platform is a Single Board Computer
 - DSRC devices (for V2V and V2I communication) integrated with the system and tested on Mi V2I test-bed


- Task 3.1: Look-ahead System Development
 - DSRC devices (for V2V and V2I communication) integrated with the system and tested on Mi V2I test-bed





- Task 3.2: HMI concept development
 - HMI Display hardware for driving simulator procured
 - Display options created

- Task 4.1: Perform driving simulator study
 - Scenarios being programed on the driving simulator

- Task 4.2: Finalize HMI display algorithm and hardware
 - Hardware being shortlisted for in-vehicle HMI

- Task 4.3: System integration and validation on the prototype truck
 - Prototype vehicle identified
 - Started the DAS system development
- Task 5.2: Pilot test planning
 - Initiated discussion with Con-Way for obtaining 2 trucks for the pilot testing
 - Developing a fuel consumption measurement plan

Collaborations

- Subcontractors
 - UMTRI:
 - Collaborated on scenario exposure and impact analysis
 - Collaborated on driver interface development
 - ORNL:
 - Exchanged experience on previous heavy-truck related studies and truck fuel efficiency measurement
- Others
 - USDoT Michigan Test Bed (V2x Communication)
 - Helped on V2x communication integration
 - NavTeq
 - Collaborated on system design and map integration

Future Work

Phase II

- Down select and finalize driver interface
- Finalize the prototype look-ahead system and integrate it onto pilot vehicles
- Develop and verify the data acquisition system for the pilot vehicles
- Pilot test vehicle preparation and validation of system
- Phase III
 - Pilot test
 - Technology evaluation

Summary

- Objective: Improve commercial fleet fuel efficiency by at least 2%
- A scenario-specific approach
 - A combination of advisory feedback and power control based on specific strategies for target scenarios to maximize fuel saving with minimum distraction
- Phase I completed, Phase II work is on-track and we are well positioned to continue the research in Phase III
 - Engaging with target end users to confirm the needs and to guide functional requirements development → paving the path for commercialization
 - Leveraging over 600k miles of naturalistic driving data from a previous study to identify high fuel consumption impact scenarios
 - Engaging with sensor and map suppliers to seek cost effective system design
 - Using the prototype truck to identify and address system design and retrofit risks upfront

