2012 DOE Vehicle Technologies Program Review

Look-ahead Driver Feedback and Powertrain Management

Conway

Principal Investigator: Zhijun (Zwick) Tang Eaton Corporation

> Project ID: VSS087 18 May 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Overview

Timeline

- Start: 10/2011
- Finish: 9/2014
- 15% complete

Budget

- Total project funding
 - DOE: \$914k
 - Cost Share: \$238k
- Current Phase:10/2011-1/2013
 - \$367K (DoE)
- Next Phase:1/2013-1/2014
 - \$308k (DoE)

- Driver acceptance
- Safety concerns
- Cost effectiveness

Partners

- UMTRI
 - Driver interface, pilot test
- ORNL:
 - Tech consulting & evaluation
- Con-Way Freight
 - End user

Relevance

- Overall Project Objective
 - <u>Develop</u> and <u>demonstrate</u> on real vehicles a <u>driver assistance</u> <u>technology</u> to reduce <u>commercial fleet</u> average fuel consumption by at least <u>2%</u>
- Phase 1 Goals
 - Develop functional requirement specifications
 - Identify driver scenarios that impacts fuel consumption the most
 - Develop feedback strategy for target scenarios
 - Develop candidate driver interface and scenarios for driving simulator workload study

Approach

- Built upon existing and next-gen sensor and information technology
 - Will assess the impact of various options and their commercialization potential
- Scenario-specific feedback strategy
 - Leverage over 600k miles of naturalistic driving data from a recent DoT study
 - Separate environment caused inefficiency from driver caused inefficiency
- A combination of powertrain control and advisory feedback
 - Maximize fuel saving potential with minimum distraction

Key Milestones in Phase I

Month/Year	Milestone or Go/No-go Decision	
1/2012	Milestone: Decide on target driving scenarios for fuel consumption impact analysis	
3/2012	Milestone: Completion of look-ahead controller hardware design	
6/2012	Milestone: Identify and prioritize the driving scenarios that have the most impact on fuel consumption	
9/2012	Milestone: Completion of functional requirement specifications development	
12/2012	Milestone: Completion of the development of driver interface candidates and the simulation study plan	
12/2012	Go/No-go: Demonstrate through simulation the feasibility of the technology and the target fuel economy improvement	

Technical Accomplishments and Progress

- Task 2.1: Voice-of-customer collection and functional requirements development
 - Interviewed one large trucking company
 - Acknowledged large fuel economy variation among drivers
 - Showed strong willingness to try the proposed technology
 - Evaluated various implementation options
 - Identified the minimum integration requirements with existing transmission and engine controls
 - Worked with sensor and map suppliers to define required features and communication interface

Technical Accomplishments and Progress

- Task 2.2: High fuel-consumption impact scenario identification
 - Defined scenarios of interest based on simulation and sampled field test data
 - Extracted grade & curve events for exposure and impact analysis

Scenario of interest	High exposure*	High impact*
Up-speed transition	$\sqrt{}$	
Speed-keeping on grade	\checkmark	\checkmark
Speed-keeping on curves	?	\checkmark
Speed-keeping in traffic	\checkmark	$\sqrt{\sqrt{1}}$
Down-speed transition	?	\checkmark

*High exposure scenarios: Scenario that accounts for significant fuel consumption **High impact scenarios: Scenarios that driver behavior can cause large fuel efficiency variation

wering Business Worldwide

Technical Accomplishments and Progress

- Task 3.1: Look-ahead System Development
 - Narrowed down hardware design to two candidates
 - Initiated integration of the DSRC devices (for V2V and V2I communication) bench test completed
 - Initiated analysis on software integration with transmission controller (for vehicles with auto transmission)

* Dedicated Short Range Communication

Collaborations

Partners

- UMTRI:
 - Collaborated on scenario exposure and impact analysis
 - Collaborated on driver interface development
- ORNL:
 - Exchanged experience on previous heavy-truck related studies and truck fuel efficiency measurement
- Others
 - USDoT Volpe Center
 - Helped on identifying additional field test data that can potentially be beneficial to the project
 - USDoT Michigan Test Bed (V2x Communication)
 - Helped on V2x communication integration
 - NavTeq
 - Collaborated on system design and map integration

Future Work

- Remaining of Phase I
 - Complete functional requirement specifications development
 - Decide on feedback strategy based on the analysis and prioritization on high fuel consumption impact scenarios
 - Develop candidate driver interfaces and scenarios for driving simulator workload study
- Phase II
 - Down select and finalize driver interface
 - Finalize the prototype look-ahead system and integrate it onto pilot vehicles
 - Develop and verify the data acquisition system for the pilot vehicles

Summary

- Objective: Improve commercial fleet fuel efficiency by at least 2%
- A scenario-specific approach
 - A combination of advisory feedback and power control based on specific strategies for target scenarios to maximize fuel saving with minimum distraction
- Phase I progress is on-track and we are well positioned to continue the research in Phase II
 - Engaging with target end users to confirm the needs and to guide functional requirements development → paving the path for commercialization
 - Leveraging over 600k miles of naturalistic driving data from a previous study to identify high fuel consumption impact scenarios
 - Engaging with sensor and map suppliers to seek cost effective system design
 - Using the prototype truck to identify and address system design and retrofit risks upfront

