

On-Line Weld NDE with IR Thermography

Jian Chen, Wei Zhang and Zhili Feng (Presenter) C. David Warren (PI)

Oak Ridge National Laboratory

May 13-17, 2013

Project ID # LM054

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

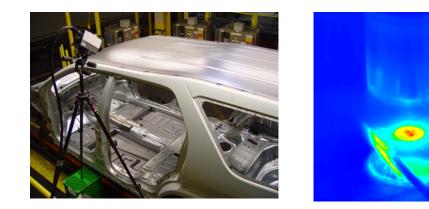
- Start: June, 2008
- End:
 - Phase I: June, 2010
 - Phase II: June, 2013
- Percent complete:
 - Phase I: 100%
 - Phase II: 90%

Budget

- Total project funding
 - DOE share: \$1,297K
 - Industry in-kind share: \$210K
- Funding for FY13: \$0

Barriers

- Barriers addressed
 - Non-destructive techniques for the evaluation of the integrity of joints made with lightweight materials.


Partners

- Interactions / collaborations
 - Chrysler, Ford, and GM
 - ArcelorMittal
 - AET Integration Inc.
 - AMD NDE Steering Committee
 - A/SP Joining Team
 - Project lead
 - Oak Ridge National Laboratory

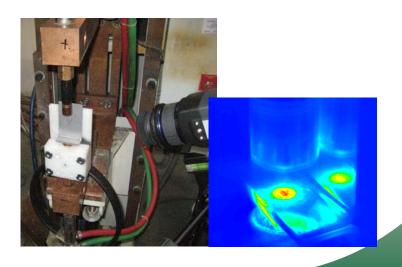
Project Objective

- Develop an online non-destructive evaluation (NDE) technology for resistance spot weld (RSW) quality monitoring based on infrared (IR) thermography that can be adopted reliably and cost-effectively in high-volume auto production environment for weld quality assessment
 - An expert system including hardware and software
 - Capable for both **post-weld** and **real-time** on-line weld quality inspection
 - Weld quality database covering wide range of weld configurations (materials, thickness, coatings) common in auto-body structures

Relevance: Technology Gaps that This Project Addresses

- Today industry primarily relies on destructive testing of spot welds
 - Labor intensive, slow and expensive (rework and scraps)
 - Less effective for advanced high-strength steels, aluminum and other lightweight materials
- The destructive evaluation of weld quality is based on statistics and random sampling of small portion of as-welded auto-bodies.
 - Impossible to inspect 100% of the welds
 - No efficient method to immediately send feedback to the production lines

Principles and Past Attempts on IR Thermography based RSW Inspection


- Postmortem NDE
 - Mostly limited to lab trials
 - Heating/cooling source
 - IR thermography is highly sensitive to surface condition and environment interference
 - Requiring painting of the weld surface (impractical in auto production line)
- Real-time NDE
 - Utilize the heat during welding
 - No successful attempts
- Advantages of IR:
 - Non-contact,
 - Non-intrusive,
 - Whole field imaging, and
 East
 - Fast

Heating/

Unknown & nonuniform surface condition (usually low emissivity)

Project Approach/Strategy

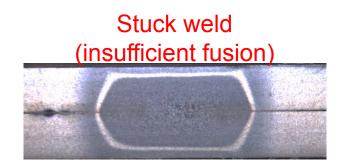
- Phase I Concept Feasibility
 - Demonstrate the feasibility to detect various weld quality/defect attributes
 - Post-weld inspection must overcome critical shortcomings of past attempts
 - Real-time inspection as weld is being made (new approach)
- Phase II Technical Feasibility
 - Refine and optimize the robust IR image analysis algorithm that can provide quantitative measure of the quality and the level of defect (if any) of spot welds
 - Develop the cost-effective prototype system (hardware and software) operated in high-volume auto production environment
 - Develop a database covering wide range of weld configurations common in auto-body structures

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
Jun-10	Demonstrate feasibility – detection of major weld quality Phase I Go/No-Go Decision (Passed)
Nov-10	Produce additional spot welds with different weld quality attributes for different steels, coating, thickness and stack-up configurations (Completed)
Feb-11	Modeling of post-mortem inspection to identify quantifiable IR thermal signatures and refine/optimize heating device and procedure (Completed)
Apr-11	Confirm the capability of low-cost IR camera (Completed)
Dec-11	Develop IR image acquisition module and analysis algorithms module for both real-time and post-weld inspection (Initial versions completed)
June-12	Development of expert software and prototype system including image acquisition, user interface, ability to adaptive learning and decision making (Prototype system developed)
Dec-12	Evaluate and improve system accuracy (Completed with expanded sets of welds)
Jan-13	IR weld NDE guideline (On-going)
June-13	Further improvement and field demo (On-going)

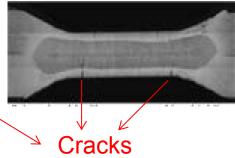
Phase II Tasks and Schedule

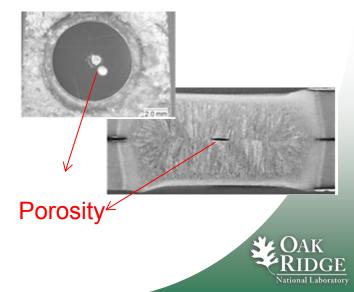
		FY2	2010			FY2	2011			FY2	2012			FY2	2013		
Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Task 1: IR Measurement Techniques																	
1.1 Producing welds																	
1.2 Postmortem techniques																	
1.3 Real-time technique																	
1.4 Destructive weld quality test																	
1.5 Modeling																	
1.6 Field trip and testing																	
Decision Gate																	
Task 2: IR Expert Software																	Completed tasks
2.1 IR signature algorithm																	
2.2 User interface																	
2.3 Image acquisition module																	Passed decision gates
2.4 Adoptive learning/training																	
2.5 Beta testing																	
Decision Gate																	On-going tasks
Task 3: IR Weld NDE Guideline																	Future decision gates
3.1 Guideline and manuals																	
Decision Gate																	
Task 4: Prototyping/Field Demo	1																
4.1 Prototype system																	
4.2 Field demonstration																	
4.3 Tech transfer																	
Decision Gate																	
Project is expected to com	plete	e in 2	nd qu	arter	ofF	Y20	13 dı	ie to	later	star	t in tl	hird o	quart	er of	FY2	010	Ste OAK

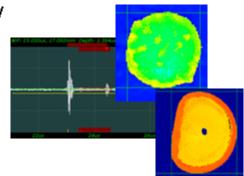

Approach: Weld Quality Metrics

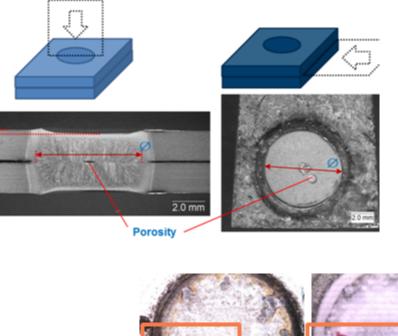
Ranked by industry advisory committee in the order of importance (high to low)

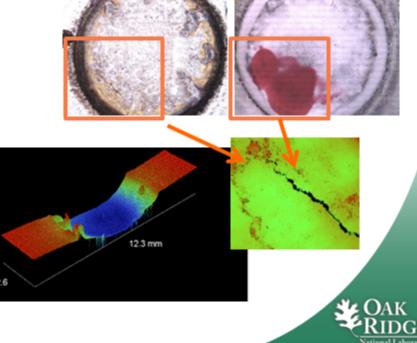
Most critical


Less critical


- Weld with no or minimal fusion
- Cold or stuck weld
- Weld nugget size
- Weld expulsion and indentation
- Weld cracks
- Weld porosity

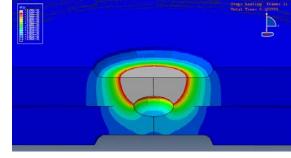


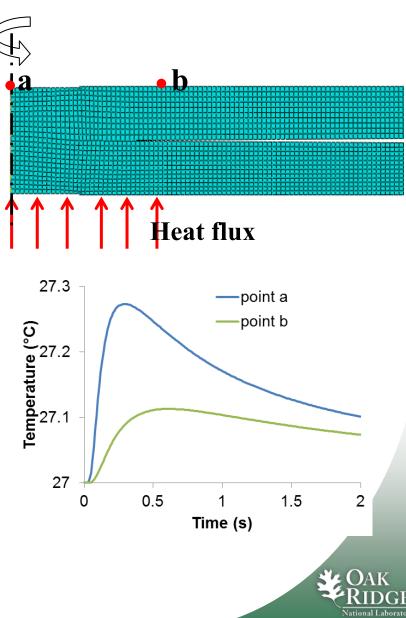

Accomplishment: Destructive Examination of Weld Attributes


- Sectioning welds
 - Nugget size and shape
 - Porosity and expulsion
 - Surface indentation
- Dye penetrants
 - Surface cracking
- Surface micro-profiling
 - Surface indentation
 - Surface cracking

• Ultrasonic C-Scan (underwater)

- Nugget and weld shape
- Porosity



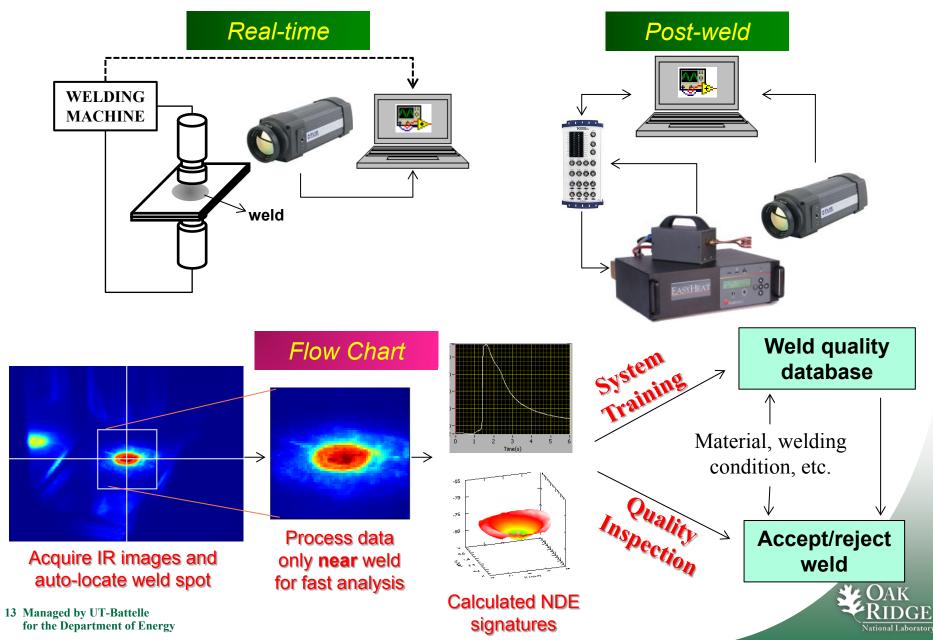


Accomplishment: Computer Modeling (Postweld NDE)

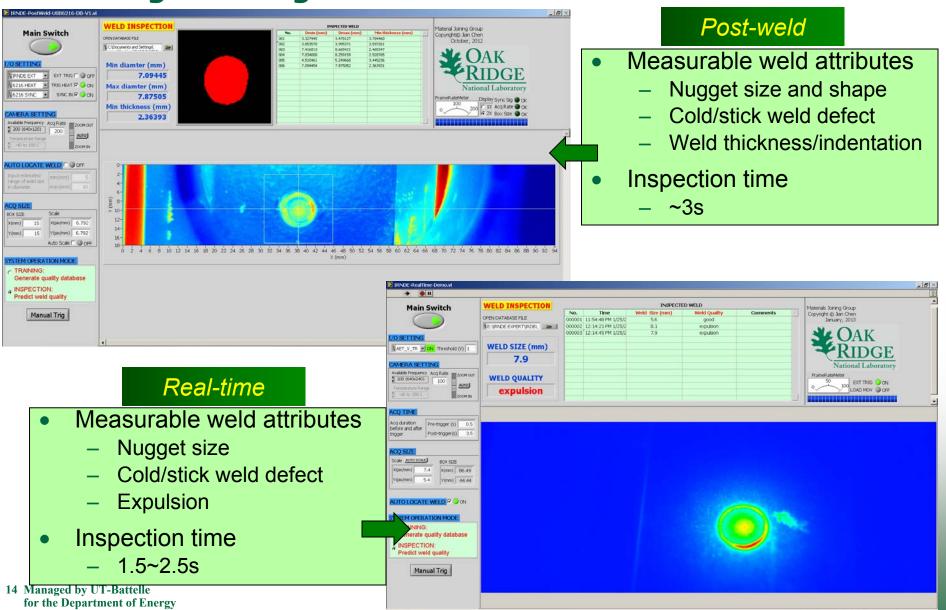
- Assist development of IR signal analysis algorithms of post-weld IR NDE
 - Several types of thermal signatures have been identified and detection algorithms have been developed for weld quality analysis, which are insensitive to surface conditions
 - Optimize the heating and testing procedures and hardware arrangements

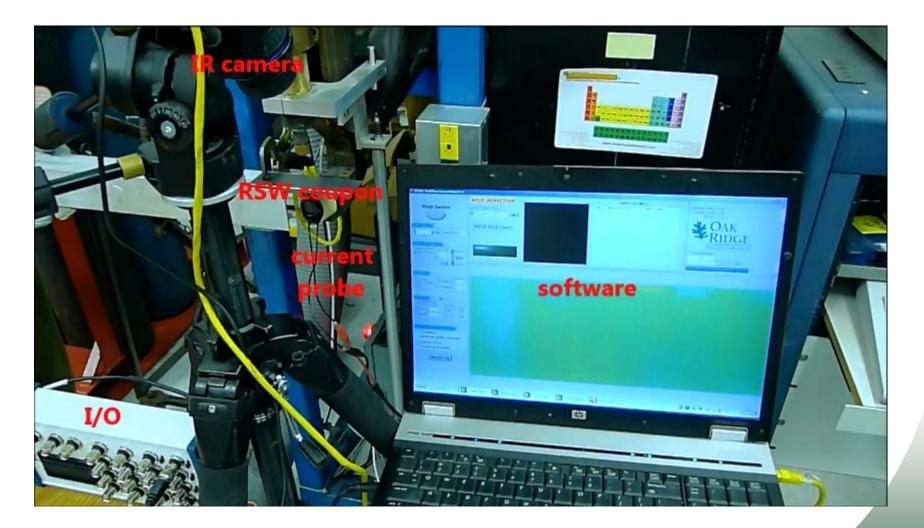
Weld with internal porosity

Accomplishment: Low-Cost Camera

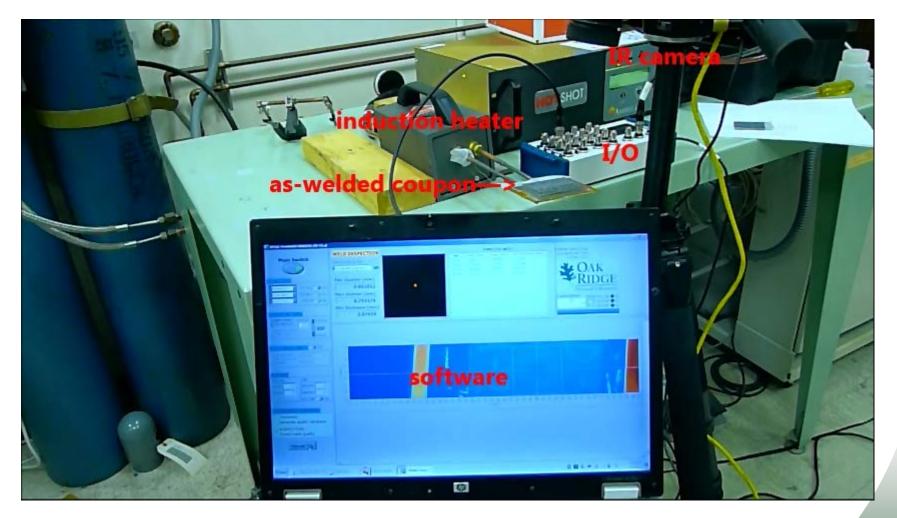

Phase I: Indigo Phoenix, \$200K

Phase II: FLIR A325, \$20K


- Dual use: both real-time monitoring and post-mortem NDE
- Initial cost estimate of entire system: \$30K-\$35K
 - IR camera: \$20K
 - Heating/cooling device: \$8K
 - Computer and software: \$2K
- Post-mortem and real-time benchmarking tests using Phase I welded samples confirmed the new camera has sufficient sensitivity and resolution


Accomplishment: Prototype Automated System Developed

Accomplishment: Automated Weld Quality Analysis Software



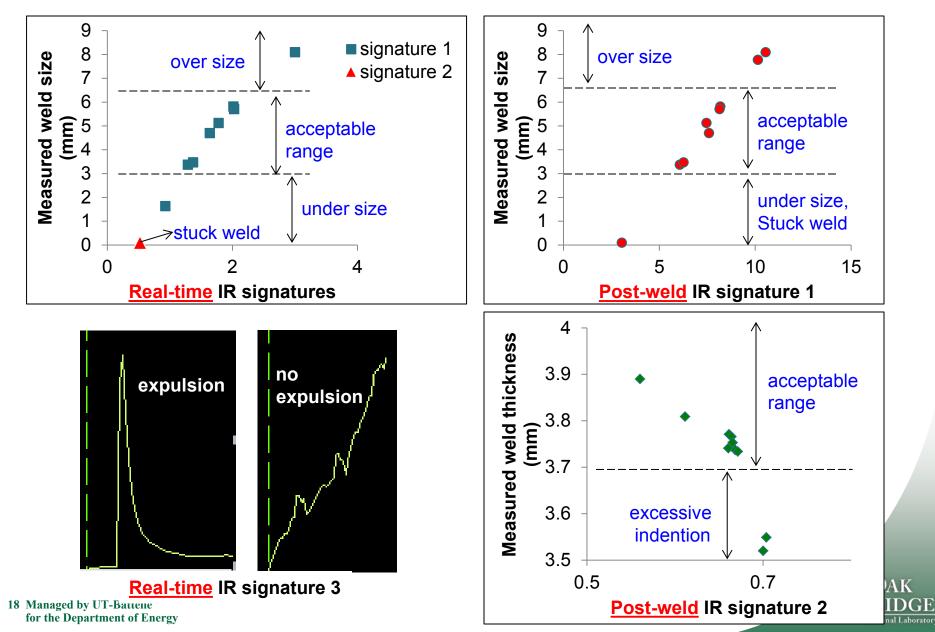
<u>Real-time</u> NDE System Operation Demonstration (Movie clip)

<u>Post-weld</u> NDE System Operation Demonstration (Movie clip)

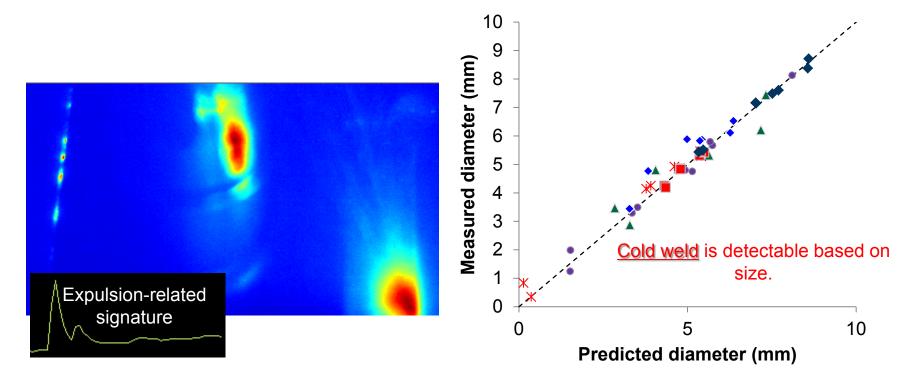
Accomplishment: Prototype system has been tested using a large matrix of materials relevant to AHSS Intensive vehicle structure

3T stack: varying steel grades, coating, thickness

- Boron bare 1.0mm
- Boron bare 2.0mm
- Boron bare 1.0mm
- Boron aluminized 1.0mm
- Boron aluminized 2.0mm
- Boron aluminized 1.0mm
- Boron bare 1.0mm
- Boron aluminized 2.0mm
- Boron bare 1.0mm
- Boron aluminized 1.0mm
- Boron bare 2.0mm
- Boron aluminized 1.0mm
- DP600 bare 1.2mm
- DP600 bare 2.0mm
- DP600 bare 1.2mm
- DP980 HDGA 1.0mm
- DP980 HDGA 2.0mm
- DP980 HDGA 1.0mm
- TRIP780 HDGA 1.0mm
- TRIP780 HDGA 1.9mm
- TRIP780 HDGA 1.0mm

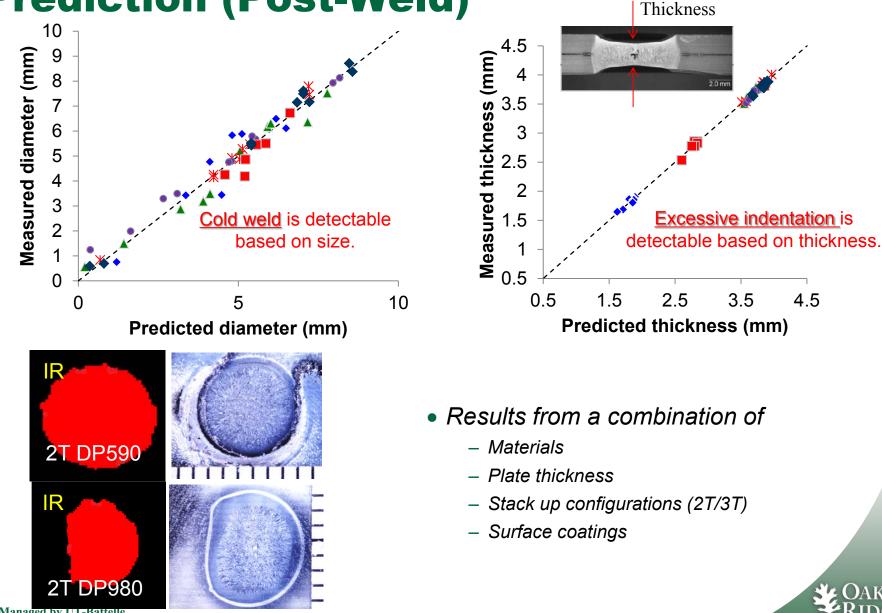

	2T stack: varying steel grades, coating, thickness
•	Boron bare 1.0mm Boron bare 1.0mm
•	Boron aluminized 1.0mm Boron aluminized 1.0mm
•	Boron bare 1.0mm Boron aluminized 1.0mm
•	Boron bare 1.0mm Boron bare 2.0mm
•	Boron aluminized 1.0mm Boron aluminized 2.0mm
•	Boron aluminized 1.0mm Boron bare 2.0mm
•	Boron bare 2.0mm Boron bare 2.0mm
•	Boron aluminized 2.0mm Boron aluminized 2.0mm
•	Boron bare 2.0mm Boron aluminized 2.0mm

2T stack: varying steel grades, coating, thickness


- DP590 galvanized 1.2mm
- DP590 galvanized 1.2mm
- DP590 galvanized 1.8mm
- DP590 galvanized 1.8mm
- DP980 cold rolled 1.2mm
- DP980 cold rolled 1.2mm
- DP980 cold rolled 1.2mm
- DP980 cold rolled 2.0mm
- DP980 cold rolled 2.0mm
- DP980 cold rolled 2.0mm
- Each combination includes spot welds with varying attributes (i.e., nugget size, indentation & defects)

Accomplishment: Surface-insensitive Thermal Signatures vs. Weld Attributes

Accomplishment: Weld Quality Prediction (Real-time)



<u>Severe expulsion</u> is detectable based on the expulsionrelated IR signature .

- Results from a combination of
 - Materials
 - Plate thickness
 - Stack up configurations (2T/3T)
 - Surface coatings

Accomplishment: Weld Quality Prediction (Post-Weld)

Collaboration and Industry Participation

- Extensively and closely worked with the industry stakeholders/end-users during R&D and system prototyping and testing
 - Support and cost-share from Ford, GM, Chrysler and ArcelorMittal
 - AMD NDE Steering Committee
 - A/SP Joining Team
 - Project technical advisory committee
 - M. Jones, W. Charron, and A. Wexler, Ford Motor
 - B. Carlson, D. Simon and, D. Hutchinson, General Motors
 - C. Schondelmayer, George Harmon and D.J. Zhou, Chrysler
 - S. Kelly and B. Yan, ArcelorMittal

Future Plan

- To complete the project
 - Beta test of the entire system at assembly line production environment
 - In discussion with OEMs for suitable testing sites.
 - Perform field demonstration.
 - Write guideline and user manual.
 - Seek industry partnership for technology transfer and eventual commercialization.
- Future opportunities
 - Apply to other materials and joining processes
 - Al Alloys (promising results have been obtained), and Mg alloys
 - Solid-state joining processes

Summary

- Successfully developed an IR-based spot weld NDE inspection prototype system capable for both real-time and post-weld on-line applications.
- Reliable detection of weld size, cold weld, expulsion, and surface indents with sufficient accuracy for various combination of materials, thickness, stack-up configuration and surface coating conditions.

Application	Measurable weld attributes	Inspection time
Real-time	Nugget size and weld shapeCold/stick weld defectsExpulsion	1.5~2.5s
Post-weld	 Nugget size Cold/stick weld defects Weld thickness/indentation 	~3s

