

Energy Efficiency & Renewable Energy

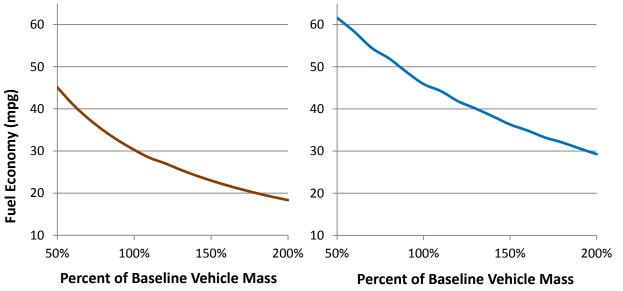
2013 Lightweight Materials Annual Merit Review Project ID: LM000 Will Joost

Lightweight Materials Vehicle Technologies Office

Vehicle Weight Reduction

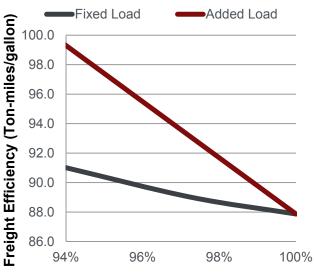
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


Conventional ICE

Hybrid/Electric Vehicles

Commercial/Heavy Duty

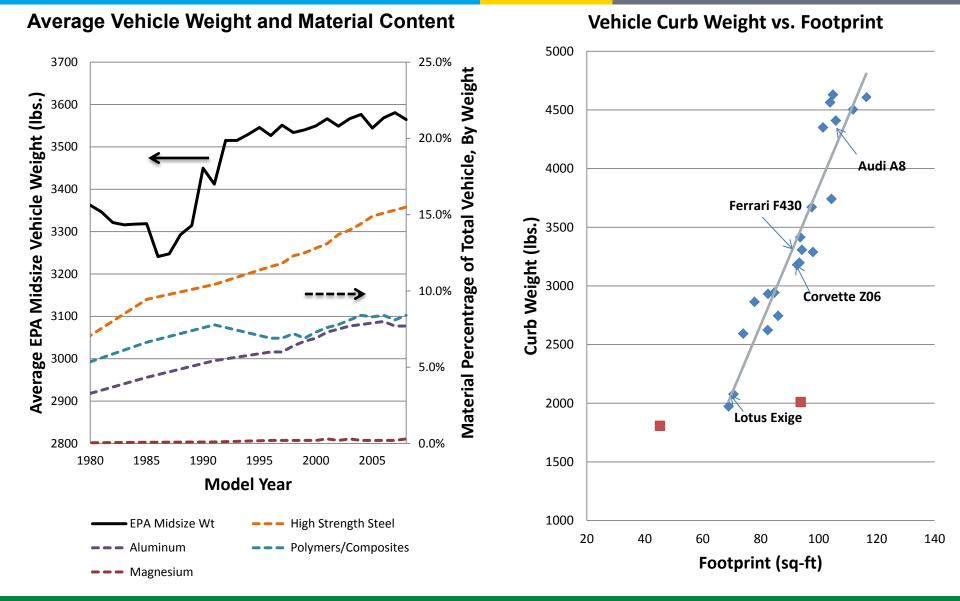


NREL 2011

6%-8% improvement in fuel economy for 10% reduction in weight

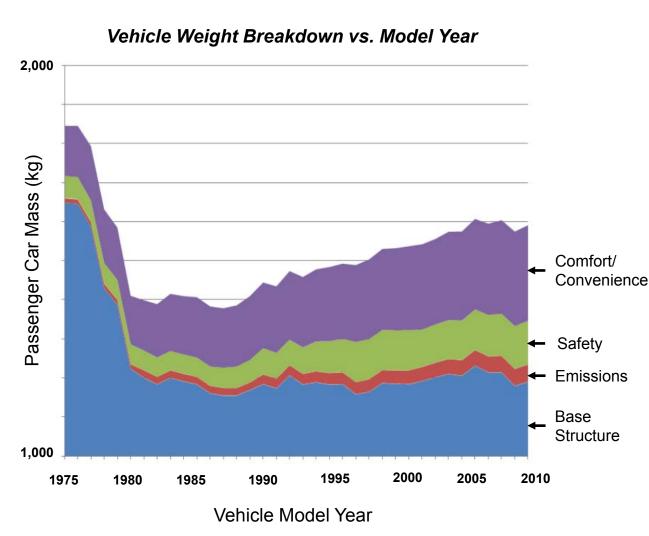
NREL 2011

Improvement in range, battery cost, and/or efficiency


Percent of Baseline Vehicle Mass Without Cargo

Ricardo Inc., 2009

13% improvement in freight efficiency for 6% reduction in weight


Trends in Vehicle Weight Reduction

ENERGY Energy Efficiency & Renewable Energy

3 | Vehicle Technologies

Where's the Weight Reduction?

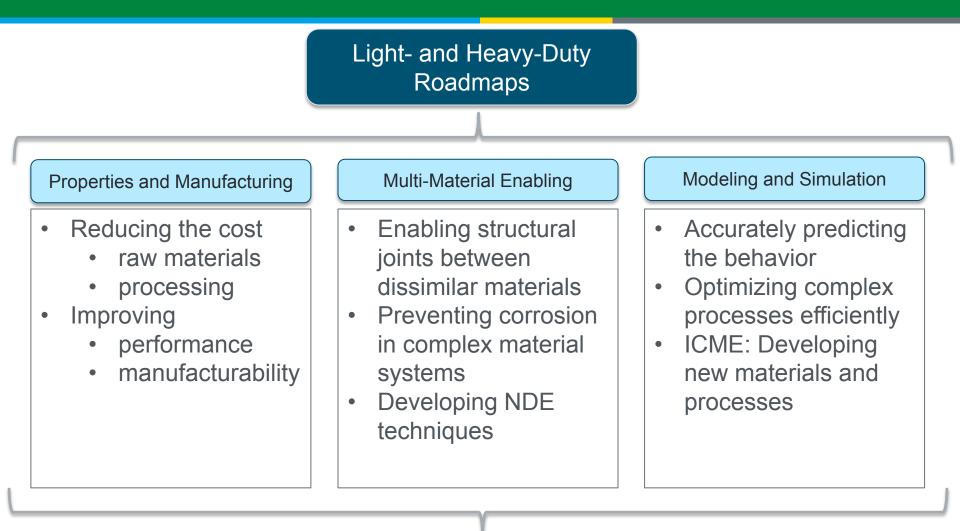
Stephen M. Zoepf "Automotive Features: Mass Impact and Deployment Characterization" MS Thesis, Massachusetts Institute of Technology, June 2011, page 36.

 Comfort, safety, and emissions control have all improved

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF


ENERGY

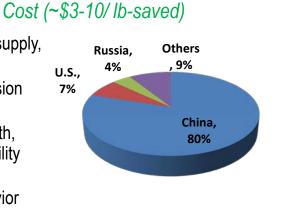
- Base structure
 weight has
 decreased
 (compounding)
- System and component weight reduction has been applied to performance rather than total vehicle weight reduction

Lightweight Materials Program

Energy Efficiency & Renewable Energy

Demonstration, Validation, and Analysis

Lightweight Automotive Materials


Energy Efficiency & Renewable Energy

Magnesium Alloys

When it "works" \rightarrow 40-70% weight reduction

$\text{Otherwise} \rightarrow$

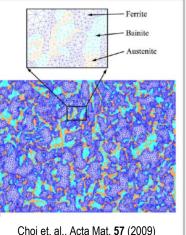
- Lack of domestic supply, unstable pricing
- Challenging corrosion
 behavior
- Inadequate strength, stiffness, and ductility
- Difficult to model deformation behavior

Aluminum Alloys

When it "works" \rightarrow 25-55% weight reduction Cost (~\$2-8/lb-saved)

Otherwise \rightarrow

•


- Insufficient strength in conventional automotive alloys
- Limited room temperature formability in conventional automotive alloys
- Difficult to join/integrate to incumbent steel structures

Advanced High Strength Steel

15-25% weight reduction \rightarrow

- Inadequate structure/properties understanding to propose steels with 3GAHSS properties
- Insufficient post-processing technology/understanding
- What other relevant properties should be considered? Hydrogen embrittlement, local fracture, etc. 1

Choi et. al., Acta Mat. **57** (20 2592-2604

Carbon Fiber Composites

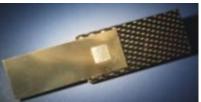
- When it "works" \rightarrow 30-65% weight reduction Otherwise \rightarrow Cost (~\$5-15/ lb-saved)
- High cost of carbon fiber
 (processing, input material)
- Joining techniques not easily implemented for vehicles
- Difficult to efficiently model across many relevant length scales

Multi-Material Enabling

U.S. DEPARTMENT OF

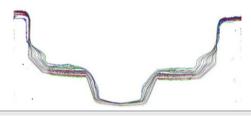
Energy Efficiency & Renewable Energy

Magnesium Alloys


- Corrosion (galvanic and general)
- Difficulty Joining
 - Mg-Mg
 - Mg-X
 - Riveted Joints
- Questionable compatibility with existing paint/coating systems

Carbon Fiber Composites

- Corrosion and environmental degradation
- Some difficulty joining
- Questions regarding non-destructive evaluation


Aluminum Alloys

- HAZ property deterioration
- Difficulty joining mixed grades
 - Joint integrity
 - Joint formability
- Difficulty recycling mixed grades

	Mg	Si	Cu	Zn
5182	4.0 - 5.0	< 0.2	< 0.15	< 0.25
6111	0.5 - 1.0	0.6 - 1.1	0.5 - 0.9	< 0.15
7075	2.1 - 2.9	< 0.4	1.2 - 2.0	5.1 - 6.1

AHSS

- HAZ property deterioration
- Limited weld fatigue strength
- Tool wear, tool load, infrastructure

Multi-material Enabling

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Magnesium Alloys

- Corrosion (galvanic and general)
- Difficulty Joining
 - Mg-Mg
 - Mg-X
 - Riveted Joints
- Questionable compatibility with existing paint/coating systems

Carbon Fiber Composites

- Corrosion and environmental degradation
- Some difficulty joining
- Questions regarding non-destruct

Aluminum Alloys

- HAZ property deterioration
- Difficulty joining mixed grades
 - Joint integrity
 - Joint for Jility
 - Dh. grad

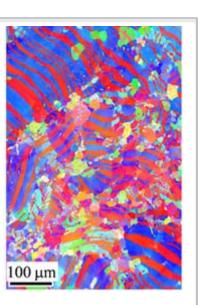
075

g mixed

	Si	Cu	Zn
4.0 0	< 0.2	< 0.15	< 0.25
0.5 - 1.0	0.6 - 1.1	0.5 - 0.9	< 0.15
2.1 - 2.9	< 0.4	1.2 - 2.0	5.1 - 6.1

oroperty deterioration

pad, infrastructure

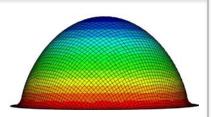

Modeling and Computational Materials Science

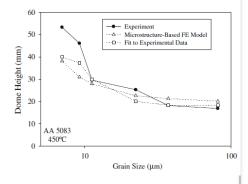
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Magnesium Alloys

- Complicated deformation in HCP Mg alloys
 - Highly anisotropic plastic response
 - Profuse twinning
- Few established design rules for anisotropy
- Substantial gaps in basic metallurgical data

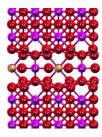

Q. Ma et al. *Scripta Mat.* **64** (2011) 813–816


Carbon Fiber Composites

- Insufficient capability in modeling relationships between physical properties, mechanical properties, and ultimately behavior
- Lack of validated, public databases of CFC material properties
- Inadequate processing-structure predictive tools

Aluminum Alloys

- Basic metallurgical models are well established
- Substantial fundamental data is available
- Useful predictive models established for some conditions
- Truly predictive, multiscale models are still lacking



AHSS

P.E. Krajewski et al. Acta Mat. 58 (2010) 1074–1086

- General lack of understanding on structures, phases, and deformation mechanisms to achieve 3GAHSS properties
- Very complicated structures, phases, and deformation mechanisms likely


N.I. Medvedeva et al. Phys. Rev. B **81** (2010) 012105

Integrated Computational Materials Engineering

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Variable set of materials
 - Alloy chemistry
 - Processing-structure
 - Within scope of selected models
- Simulate fine-scale behavior, homogenize to higher level models
- Experimental input/validation where appropriate

Energy Efficiency & Renewable Energy

Carol Schutte carol.schutte@ee.doe.gov

Will Joost william.joost@ee.doe.gov