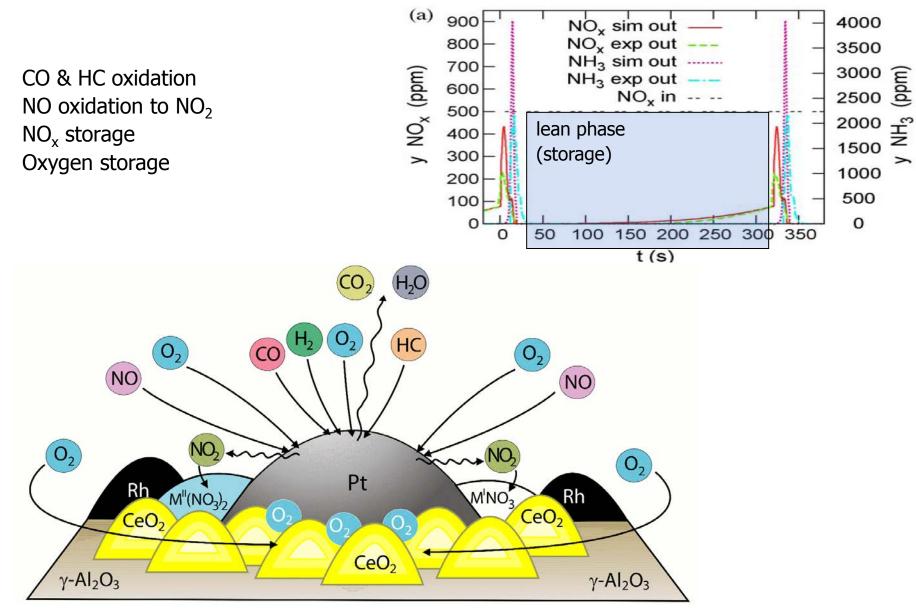


Lean NO_x Trap Regeneration Selectivity Towards N₂O

Similarities and Differences Between H₂, CO and C₃H₆ Reductants

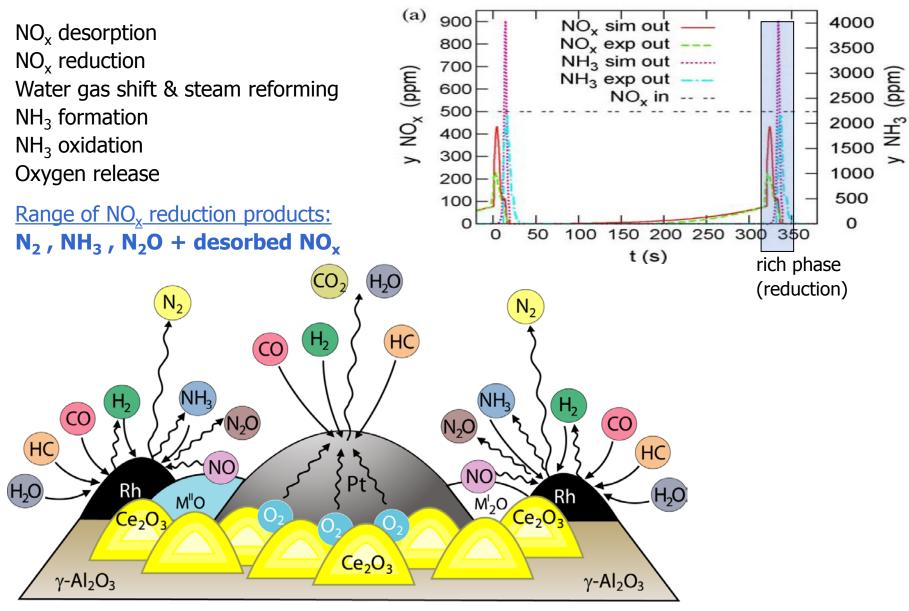
<u>Šárka Bártová</u>, David Mráček, Petr Kočí, Miloš Marek Institute of Chemical Technology, Prague

Jae-Soon Choi, Josh Pihl, C. Stuart Daw, William Partridge Oak Ridge National Laboratory

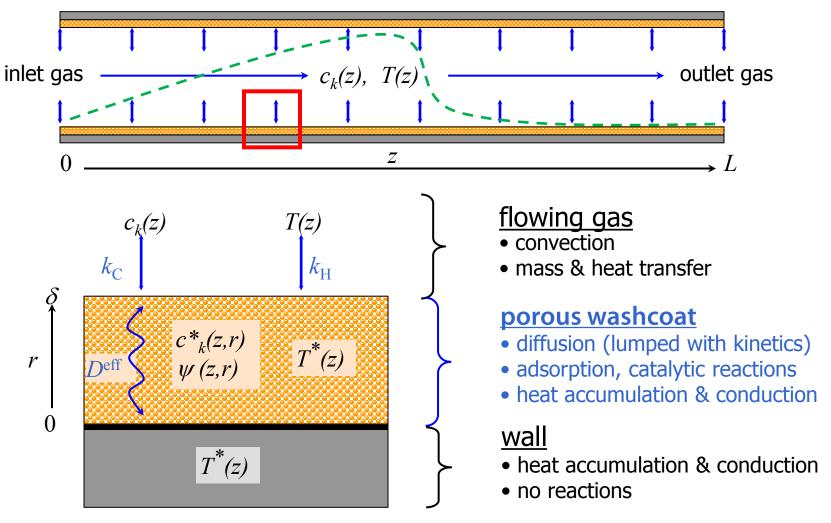

-2-

N₂O emissions in automotive exhaust gas aftertreatment

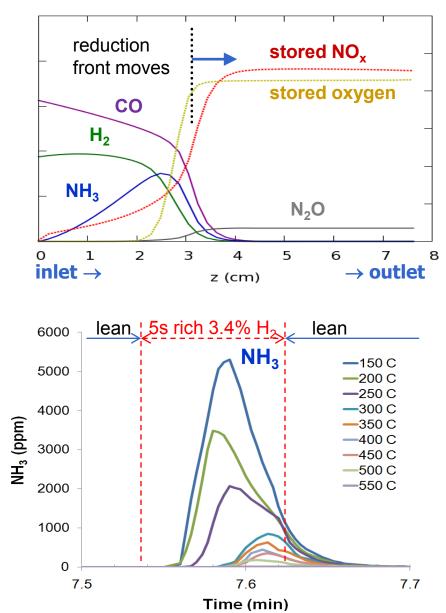
- **Undesired by-product** of catalytic NO_x reduction in exhaust gas aftertreatment systems, particularly of lean-burn engines.
 - **DOC** non-selective HC-SCR at lower-intermediate T
 - NH_3 -SCR too high NO_2/NO_x ratio, NH_4NO_3 decomposition, NH_3 oxidation
 - **NH₃ slip** catalyst (=ASC) non-selective NH₃ oxidation
 - LNT (=NSRC) regeneration
- In low concentrations pose **no health risk.** Global average in atmosphere ~ 0.3 ppm.
- Strong **greenhouse gas** (global warming potential ~300 x higher than CO₂). Mean N₂O tailpipe concentrations are typically 10^3 - 10^5 lower than those of CO₂, therefore overall GHG contribution of N₂O in automotive exhaust gas can vary from 0.1 % up to several %.
- Natural sources (biological processes in soil and water) ~ 60% of total N₂O emissions. The main human-related source of N₂O is agricultural soil management (fertilizers), adipic and nitric acid production, and combustion of fossil fuels.
- Mobile N₂O emissions have been unregulated, but EU and US limits are expected in near future.

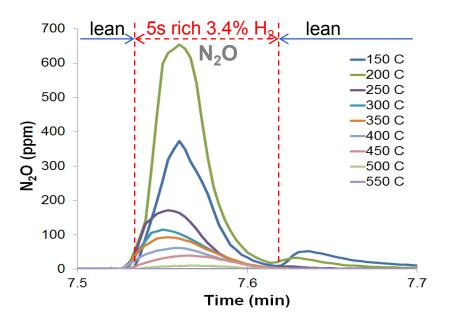


NO_x storage catalyst – <u>lean</u> fuel mixture, <u>oxidising</u> conditions


NO_x storage catalyst – <u>rich</u> fuel mixture, <u>reducing</u> conditions

-5-


Coupling of reaction and transport – monolith channel model


- \Rightarrow Standard heterogeneous 1D model
- \Rightarrow Transient solution of all components necessary (no steady state)

Rich reduction of the stored NO_x – moving regeneration front

- A large part of the stored NO_x is reduced in the rich zone up to NH₃.
- The formed NH_3 is transported downstream where it reacts with the stored $NO_x \rightarrow$ **delay of the NH_3 peak**.
- N₂O is emitted before the reductants breakthrough → primary N₂O peak.
- Secondary N₂O peak may appear at the switch back to lean conditions due to oxidation of adsorbed intermediates.

Global model reactions – oxidation/reduction over NM sites Reductant oxidation (Kočí et al., 2009)

 $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $C_3H_6 + \frac{9}{2}O_2 \rightarrow 3CO_2 + H_2O$

Water gas shift and steam reforming

 $CO + H_2O \rightarrow CO_2 + H_2$ $C_3H_6 + 3H_2O \rightarrow 3CO + 6H_2$

NO reduction

 $NO + CO \rightarrow CO_2 + \frac{1}{2}N_2$ $NO + \frac{5}{2}H_2 \rightarrow H_2O + NH_3$

 $9NO + C_3H_6 \rightarrow 3CO_2 + 3H_2O + \frac{9}{2}N_2$

NO/NO₂ transformation

 $NO + \frac{1}{2}O_2 \rightarrow NO_2$ $NO_2 + CO \rightarrow NO + CO_2$ $9NO_2 + C_3H_6 \rightarrow 9NO + 3CO_2 + 3H_2O$ $G_{1} = (1 + K_{a,1}y_{CO} + K_{a,2}y_{C_{3}H_{6}})^{2} \cdot (K_{a,3}y_{CO}^{2}y_{C_{3}H_{6}}^{2}) \cdot (1 + K_{a,4}y_{N}^{0})$ $G_2 = 1 + K_{a,5}y_{0,2}$

$$R_{1} = k_{1} \Psi_{cap,Pt} y_{CO} y_{O_{2}} \frac{1}{G_{1}}$$

$$R_{2} = k_{2} \Psi_{cap,Pt} y_{H_{2}} y_{O_{2}} \frac{1}{G_{1}}$$

$$R_{3} = k_{3} \Psi_{cap,Pt} y_{C_{3}H_{6}} y_{O_{2}} \frac{1}{G_{1}}$$

$$\begin{aligned} R_4 &= k_4 \Psi_{cap,Pt} \left(y_{CO} y_{H_2O} - \frac{y_{CO_2} y_{H_2}}{K_{y,4}^{eq}} \right) \\ R_5 &= k_5 \Psi_{cap,Pt} \left(y_{C_3H_6} y_{H_2O} - \frac{y_{CO}^3 y_{H_2}^6}{K_{y,5}^{eq} y_{H_2O}^2} \right) \end{aligned}$$

$$R_{6} = k_{6} \Psi_{cap,Pt} y_{CO} y_{NO}^{0.5} \frac{1}{G_{2}} \frac{1}{G_{1}}$$

$$R_{7} = k_{7} \Psi_{cap,Pt} y_{H_{2}} y_{NO}^{0.5} \frac{1}{G_{2}} \frac{1}{G_{1}}$$

$$R_{8} = k_{8} \Psi_{cap,Pt} y_{C_{3}H_{6}} y_{NO}^{0.5} \frac{1}{G_{2}} \frac{1}{G_{1}}$$

$$R_{9} = k_{9}\Psi_{cap,Pt} \left(y_{NO}y_{O_{2}}^{0.5} - \frac{y_{NO_{2}}}{K_{y,9}^{eq}} \right) \frac{1}{G_{1}}$$

$$R_{10} = k_{10}\Psi_{cap,Pt}y_{NO_{2}}y_{CO}\frac{1}{G_{NO_{2},red}}$$

$$R_{11} = k_{11}\Psi_{cap,Pt}y_{NO_{2}}y_{C_{3}H_{6}}\frac{1}{G_{NO_{2},red}}$$

$$R_{11} = k_{11}\Psi_{cap,Pt}y_{NO_{2}}y_{C_{3}H_{6}}\frac{1}{G_{NO_{2},red}}$$

Global model reactions – storage and release

Oxygen storage & reduction

 $Ce_{2}O_{3} + \frac{1}{2}O_{2} \rightarrow Ce_{2}O_{4}$ $Ce_{2}O_{4} + CO \rightarrow Ce_{2}O_{3} + CO_{2}$ $Ce_{2}O_{4} + H_{2} \rightarrow Ce_{2}O_{3} + H_{2}O$ $Ce_{2}O_{4} + \frac{1}{9}C_{3}H_{6} \rightarrow Ce_{2}O_{3} + \frac{1}{3}CO_{2} + \frac{1}{3}H_{2}O$

Fast NO_x storage (Ba sites in proximity of Pt)

 $BaCO_{3} + 2NO_{2} + \frac{1}{2}O_{2} \rightarrow Ba(NO_{3})_{2} + CO_{2}$ $BaCO_{3} + 2NO + \frac{3}{2}O_{2} \rightarrow Ba(NO_{3})_{2} + CO_{2}$ <u>Slow NO_x storage (bulk Ba sites)</u>

 $BaCO_3-bulk + 3NO_2 → Ba(NO_3)_2-bulk + NO$ $Ba(NO_3)_2-bulk → Ba(NO_3)_2$

Desorption of stored NO_x

 $Ba(NO_{3})_{2}+3CO \rightarrow 2NO + BaO + 3CO_{2}$ $Ba(NO_{3})_{2}+3H_{2} \rightarrow 2NO + BaO + 3H_{2}O$ $Ba(NO_{3})_{2}+\frac{1}{3}C_{3}H_{6} \rightarrow 2NO + BaO + CO_{2} + H_{2}O$ $CO_{2} \text{ adsorption on NO}_{x} \text{ storage sites}$ $CO_{2}+BaO \leftrightarrow BaCO_{3}$ $G_{4} = (1 + 0.1K_{a,6}y_{O_{2}})(1 + K_{a,7}y_{NO_{x}})$

(Kočí et al., 2009, Chatterjee et al., 2010) $R_{12} = k_{12} \Psi_{cap,CeO_2} y_{O_2} \left(\psi_{O_2}^{eq} - \psi_{O_2} \right)$ $R_{13} = k_{13} \Psi_{cap,CeO_2} y_{CO} \psi_{O_2}$ $R_{14} = k_{14} \Psi_{cap,CeO_2} y_{H_2} \psi_{O_2}$ $R_{15} = k_{15} \Psi_{cap,CeO_2} y_{C_3H_6} \psi_{O_2}$

$$\begin{split} R_{16} &= k_{16} \Psi_{cap,Ba_A} y_{NO_2} \left(\psi_{NO_{x,A}}^{eq} - \psi_{NO_{x,A}} \right)^2 \\ R_{17} &= k_{17} \Psi_{cap,Ba_A} y_{NO} \left(\psi_{NO_{x,A}}^{eq} - \psi_{NO_{x,A}} \right)^2 \end{split}$$

$$R_{29} = k_{29} \Psi_{cap,Ba_B} y_{NO_2} \left(\psi_{NO_{x,B}}^{eq} - \psi_{NO_{x,B}} \right)^2 R_{30} = k_{30} \Psi_{cap,Ba_B} y_{NO_2} (\psi_{NO_{x,B}} - \psi_{NO_{x,A}})$$

$$R_{22} = k_{22} \Psi_{cap,Ba_A} y_{CO} \psi_{NO_{x,A}}^2 \frac{1}{G_4}$$

$$R_{23} = k_{23} \Psi_{cap,Ba_A} y_{H_2} \psi_{NO_{x,A}}^2 \frac{1}{G_4}$$

$$R_{24} = k_{24} \Psi_{cap,Ba_A} y_{C_3H_6} \psi_{NO_{x,A}}^2 \frac{1}{G_4}$$

$$R_{31} = \Sigma_{j=18}^{25} R_{j=18}$$

Global model reactions – reduction of nitrates "Classical" approach with NH₃ intermediate and N₂ product

Direct reduction of stored NO_x (Ba sites in proximity of Pt) (Kočí et al., 2009)

$$Ba(NO_{3})_{2}+5CO \rightarrow N_{2} + BaO + 5CO_{2} \qquad R_{18} = R_{18}$$

$$Ba(NO_{3})_{2}+8CO + 3H_{2}O \rightarrow 2NH_{3} + BaO + 8CO_{2} \qquad R_{19} = R_{19}$$

$$Ba(NO_{3})_{2}+\frac{5}{9}C_{3}H_{6} \rightarrow N_{2} + BaO + \frac{5}{3}CO_{2} + \frac{5}{3}H_{2}O \qquad R_{21} = R_{21}$$

$$Ba(NO_{3})_{2}+8H_{2} \rightarrow 2NH_{3} + BaO + 5H_{2}O \qquad R_{20} = R_{20}$$

$$R_{18} = k_{18} \Psi_{cap,Ba_A} y_{CO} \psi_{NO_{x,A}}^2 \frac{1}{G_3}$$

$$R_{19} = k_{19} \Psi_{cap,Ba_A} y_{CO} \psi_{NO_{x,A}}^2 \frac{1}{G_3} \frac{1}{G_5}$$

$$R_{21} = k_{21} \Psi_{cap,Ba_A} y_{C_3H_6} \psi_{NO_{x,A}}^2 \frac{1}{G_3}$$

$$R_{20} = k_{20} \Psi_{cap,Ba_A} y_{H_2} \psi_{NO_{x,A}}^2 \frac{1}{G_3} \frac{1}{G_5}$$

<u>NH₃ oxidation reactions – only N₂ formation considered</u>

 $\frac{10}{3}\text{NH}_{3} + \text{Ba}(\text{NO}_{3})_{2} \rightarrow \frac{8}{3}\text{N}_{2} + \text{BaO} + 3\text{H}_{2}\text{O}$ $2\text{NH}_{3} + 3\text{NO} \rightarrow \frac{5}{2}\text{N}_{2} + 3\text{H}_{2}\text{O}$ $2\text{NH}_{3} + \frac{3}{2}\text{O}_{2} \rightarrow \text{N}_{2} + 3\text{H}_{2}\text{O}$ $2\text{NH}_{3} + 3\text{Ce}_{2}\text{O}_{4} \rightarrow \text{N}_{2} + 3\text{H}_{2}\text{O} + 3\text{Ce}_{2}\text{O}_{3}$

$$R_{25} = k_{25} \Psi_{cap,Ba_A} y_{NH_3} \psi_{NO_{x,A}}^2$$

$$R_{26} = k_{26} \Psi_{cap,Pt} y_{NH_3} y_{NO}^{0.5}$$

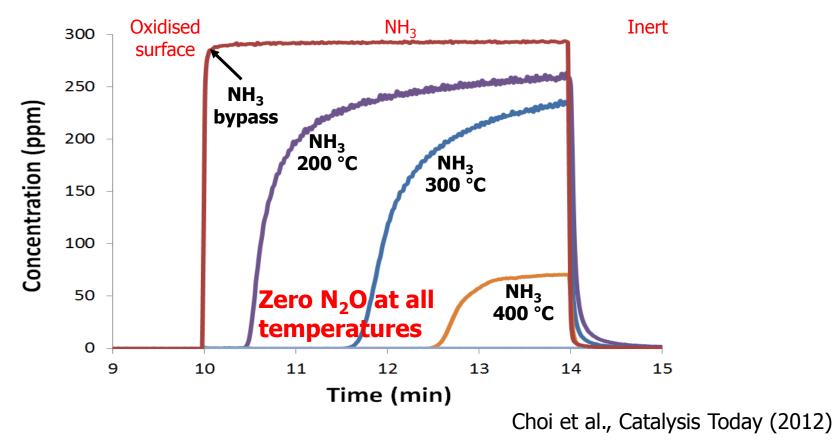
$$R_{27} = k_{27} \Psi_{cap,Pt} y_{NH_3} y_{O_2}$$

$$R_{28} = k_{28} \Psi_{cap,CeO_2} y_{NH_3} \psi_{CeO_2}$$

$$G_3 = 1 + K_{a,6} y_{O_2}$$
 $G_5 = 1 + K_{a,8} y_{CO}$

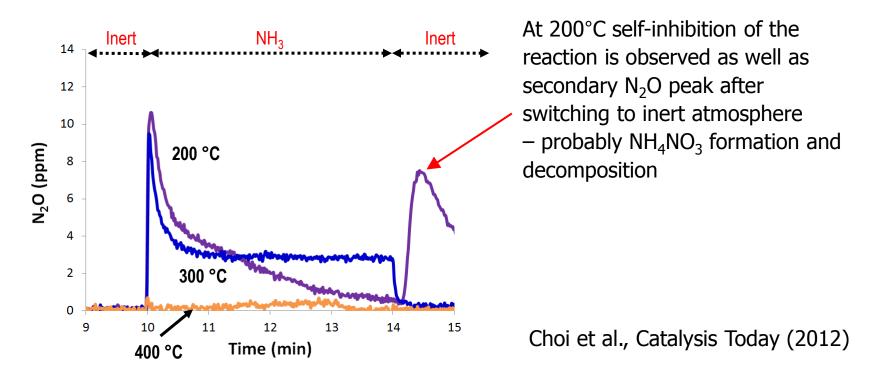
The conventional global kinetic model does not consider N₂O. Motivation: Extend the existing model in order to enable N₂O prediction, using minimum number of new reactions and components.

Primary N₂O peak during the rich phase Identification of the mechanism...

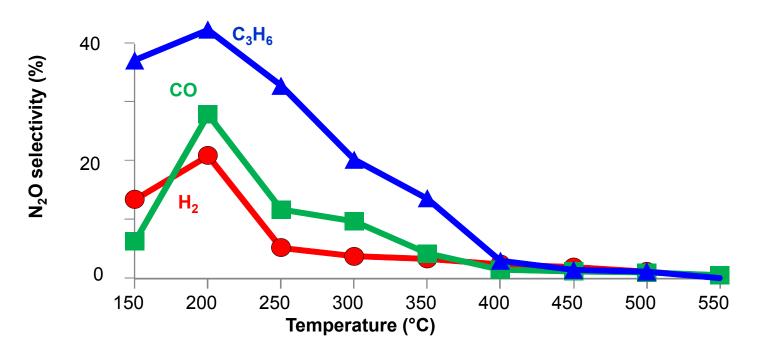

Several candidate reactions:

- Non-selective NH₃ re-oxidation poor selectivity of PGM catalysts in NH₃ oxidation is known. There are two main species for NH₃ to react with:
 - Stored oxygen
 - Stored NO_x
- Formation of N_2O during reduction of stored NO_x by primary reductants (H_2 , CO and HC)
 - Most of the stored NO_x are reduced under locally rich conditions (leading mainly to NH₃), but at the head of the reducing front the reductants initially reach oxidized sites surrounded by stored NO_x local formation of N₂O possible.

Source of primary N₂O peak during the rich phase Reaction of NH₃ + stored oxygen ?


- Pre-oxidised surface (followed by inert purge), then NH₃ introduced.
- The reaction with stored oxygen is very rapid \Rightarrow plug-like behaviour
- Contrary to steady-state NH_3 oxidation, no N_2O is detected. NH_3 decomposition at high T.
- \Rightarrow This reaction does not contribute to N_2O formation.

Source of primary N₂O peak during the rich phase Reaction of NH₃ + stored NO_x ?


- Nitrated surface (NO_x + O₂ storage), then inert purge, then NH_3 introduced
- N_2O is formed all the time before NH_3 breakthrough.
- \Rightarrow This reaction definitely contribute to N₂O formation.

However, is this a unique reaction, and is the NH₃ intermediate necessary for N₂O formation during LNT regeneration?

N₂O selectivity in short cycles (60s lean + 5s rich)

• N₂O by-product formed at lower T with all reductants, particularly $C_3H_6 >> CO > H_2$. The unique NH₃ intermediate route cannot explain the trend – C_3H_6 at lower temperatures gives practically no NH₃ but significant N₂O.

 $\Rightarrow~N_2O$ can be formed by the interaction of stored NO_x with any reductant. The ammonia intermediate is not necessary.

Generalized approach to reduction of stored NO_x

Full range of N-products considered

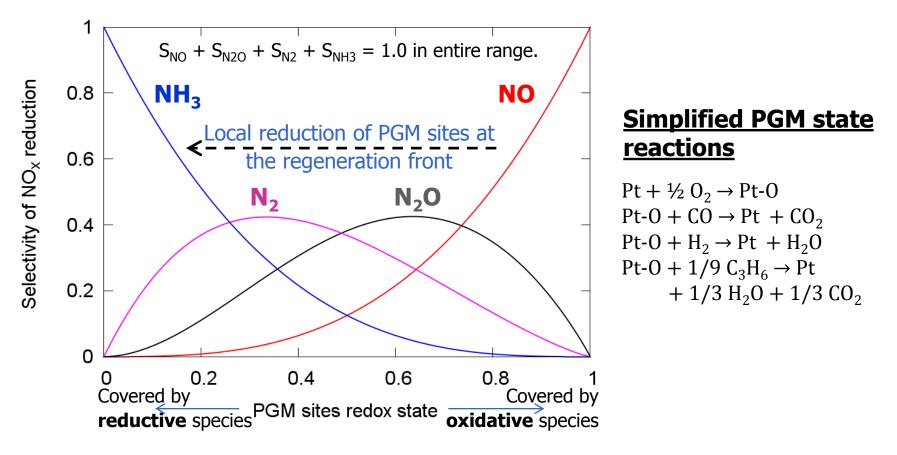
<u>Reduction of stored NO_x (Ba sites in proximity of Pt)</u> Sum of selectivities $(S_{NO} + S_{N2O} + S_{N2} + S_{NH3}) = 1.0$

 $\begin{array}{rl} Ba(NO_3)_2 + S_{NO}^{*3} H_2 + S_{N2O}^{*4} H_2 &+ S_{N2}^{*5} H_2 + S_{NH3}^{*8} H_2 \rightarrow \\ \rightarrow BaO &+ S_{NO}^{*2} NO + S_{N2O}^{*1} N_2O + S_{N2}^{*1} N_2 + S_{NH3}^{*2} NH_3 + \dots H_2O \end{array}$

 $\begin{array}{l} \text{Ba}(\text{NO}_3)_2 + \text{S}_{\text{NO}} * 3 \text{ CO} + \text{S}_{\text{N2O}} * 4 \text{ CO} &+ \text{S}_{\text{N2}} * 5 \text{ CO} + \text{S}_{\text{NH3}} * (8 \text{ CO} + 3 \text{ H}_2 \text{O}) \rightarrow \\ \rightarrow \text{BaO} &+ \text{S}_{\text{NO}} * 2 \text{ NO} + \text{S}_{\text{N2O}} * 1 \text{ N}_2 \text{O} + \text{S}_{\text{N2}} * 1 \text{ N}_2 + \text{S}_{\text{NH3}} * 2 \text{ NH}_3 + \dots \text{CO}_2 \end{array}$

 $\begin{array}{l} Ba(NO_3)_2 + S_{NO}^*3/9 C_3 H_6 + S_{N2O}^*4/9 C_3 H_6 + S_{N2}^*5/9 C_3 H_6 \rightarrow \\ \rightarrow BaO + S_{NO}^*2 NO + S_{N2O}^*1 N_2 O + S_{N2}^*1 N_2 + \dots CO_2 + \dots H_2 O \end{array}$

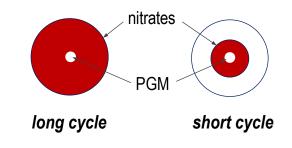
<u>Reduction of stored NO_x by NH₃ (Ba sites in proximity of Pt)</u> Sum of selectivities $(S_{NO} + S_{N2O} + S_{N2}) = 1.0$


Ba(NO₃)₂ + S_{NO}*6/5 NH₃ + S_{N2O}*2 NH₃ + S_{N2}*10/3 NH₃ → → BaO + S_{NO}*16/5 NO + S_{N2O}*2 N₂O + S_{N2}*8/3 N₂ + ... CO₂ + ... H₂O

Is there an approximate measure in global kinetic model that can give prediction of actual local NO_x reduction selectivity?

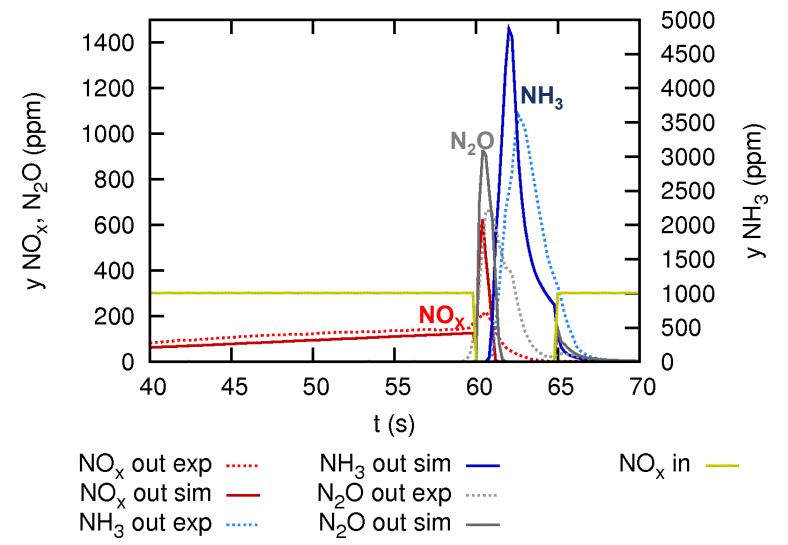
Implementation of variable selectivity to global kinetic model – Selectivity as a function of local Pt (PGM) sites state

• Local selectivities of the stored NO_x reduction to NO, N₂O, N₂ or NH₃ are linked with coverage of oxidative or reductive species on locally available PGM sites. Smooth polynomial functions are used and this approximate map is employed in global kinetics LNT model.

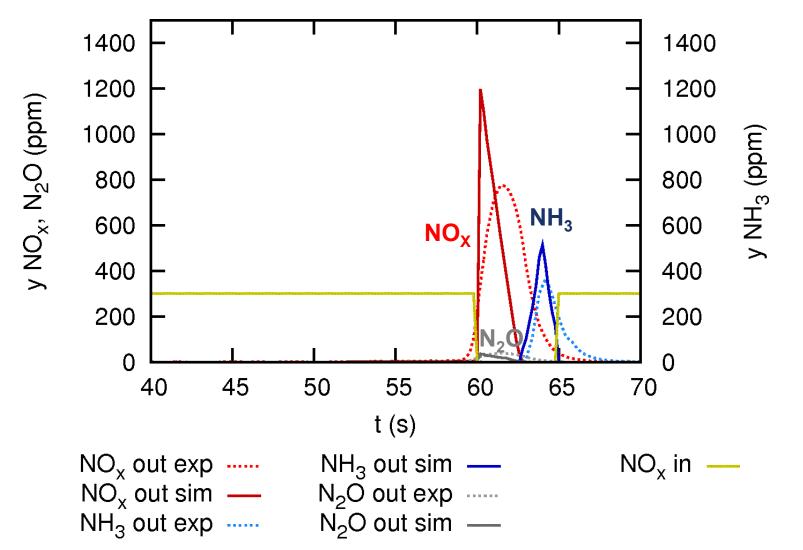


The rates determining selectivity of NO_x reduction in LNT

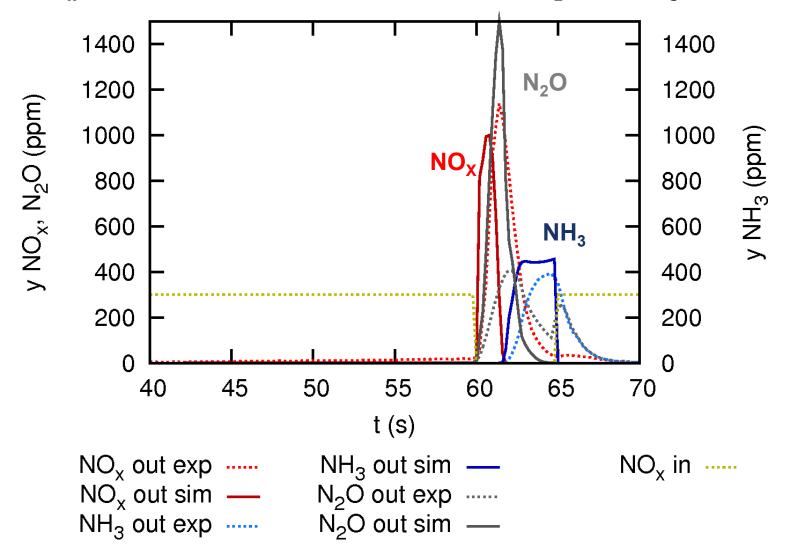
- Three types of sites need to be reduced during the LNT regeneration:
 - Precious group metal (PGM) sites
 - NO_x storage sites
 - Oxygen storage sites
- Ratio between the respective reduction rates determines local selectivity:
 - If PGM reduction is slow and inefficient => higher N_2O formation
 - ➢ lower T
 - > inefficient reductant of PGM (C_3H_6)
 - If PGM reduction is fast and efficient => N_2 , NH_3
 - ➢ higher T
 - > efficient reductant (H_2)
 - Slower release of stored NO_x for reduction => NH_3
 - Ionger lean phase
 - \succ NO_x adsorption on the storage sites farther from PGM redox sites



Lean/rich cycles example – 200°C, H₂ reductant


60 s lean + 5 s rich, fast regeneration by **3.4 %** H_2 Slower NO_x release, slow PGM reduction \Rightarrow high N₂O, high NH₃.

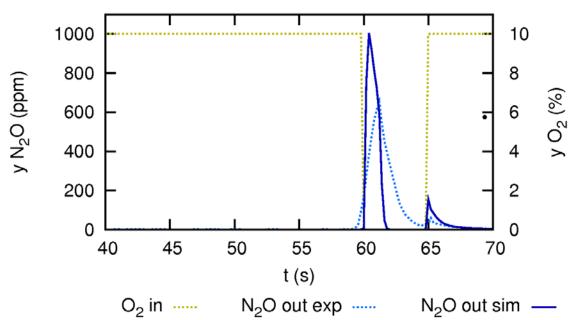
Lean/rich cycles example – 400°C, H₂ reductant


60 s lean + 5 s rich, fast regeneration by **3.4 %** H_2 Facile NO_x release, efficient PGM reduction \Rightarrow low N₂O, some NH₃ (changed scale).

Lean/rich cycles example – 300°C, C₃H₆ reductant

60 s lean + 5 s rich, fast regeneration by **3780 ppm** C_3H_6 Facile NO_x release, slow PGM reduction \Rightarrow high NO & N₂O, low NH₃.

Integral conversions and selectivities for individual reductants



Secondary N₂O peak at transition back from rich to lean

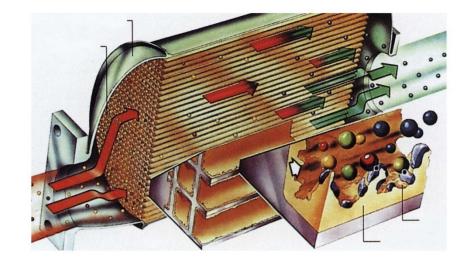
Caused by oxidation of adsorbed reduction intermediates.

a) Ammonia-related species – mainly during regeneration with H_2 at low T (200°C)

At least NH₃ adsorption, NH₃+O₂ and NH₃+NO \rightarrow N₂O reactions need to be considered

b) Carbonaceous species – mainly during regeneration with HC at intermediate T (200-350°C)

- Isocyanates (R-CNO), but other candidates also exist
- Under investigation, not yet included in the current model


Conclusions

- At lower-intermediate temperatures, the N_2O is emitted in two peaks
- NH₃ intermediate is not a unique route for N₂O formation
- Global model for primary N₂O peak: Variable selectivity of the NO_x reduction depending on local state of PGM sites
 - At the head of reducing front, the PGM sites are not fully reduced yet $\rightarrow N_2O$
 - Overall selectivity depends on the **ratio of individual rates**, specific for each reductant:
 - **PGM** reduction rate
 - **NO_x** release rate
 - Stored oxygen reaction rate
- Global model for **secondary** N_2O **peak**: Oxidation of adsorbed reduction intermediates
 - NH₃-related relevant at low T: **adsorbed NH₃**, possibly NH₄NO₃
 - Carbonaceous intermediates isocyanates, ...?
- Main source of N_2O at intermediate temperatures are hydrocarbons
 - Large N₂O peaks with C₃H₆ up to 350°C
 - Reforming to H_2 and CO can decrease N_2O yield (and increase NO_x conversion)

Acknowledgements

- Czech Ministry of Education, Kontakt II project LH 12086
- US DOE Vehicle Technologies program, CLEERS
- Daimler AG

