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NSR/SCR Technology 

NSR  SCR  

 Promising non-urea deNOx 
technology for light- & 
medium-duty diesel & lean 
burn gasoline 

 

 Synergistic benefits 
demonstrated:  Increased 
NOx conversion by adding 
SCR unit downstream 

 
 Understanding of the 

coupling between LNT & 
SCR series-brick 
configuration is emerging 
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NSR/SCR Technology 

Goal:  Reduce PGM & minimize fuel penalty 
in meeting NOx emission targets 

(adapted from Gandhi et al., US Patent, 2007)  
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Fundamental Issues for Dual Layer 
 LNT – SCR proximity:  Dual layer vs. physical mixture 
 

 LNT composition, structure & loading 
 

 SCR composition & loading 
 

 Thermal durability   
 

 Dual layer vs. sequential monolith configuration 
 

 etc. 
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Fundamental Issues for Dual Layer 
 LNT – SCR proximity:  Dual layer vs. physical mixture 
 

 LNT composition, structure & loading 
 

 SCR composition & loading 
 

 Thermal durability   
 

 Dual layer vs. sequential monolith configuration 
 

 etc. 
 

 
  our aim is to resolve some of these issues… 
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NSR/SCR:  A Different Role for the LNT 

NSR  SCR  

  LNT Ideal Target:  50% NOx conversion &100% NH3 selectivity: 
 
    LNT:   NO  +  4 H2  + 0.75 O2    NH3  + 2.5 H2O       
    SCR:  NO  +  NH3   + 0.25 O2      N2  +  1.5 H2O          
         Overall:    2 NO  + 4 H2  +  O2     N2  +  4 H2O 

2 NO 

1.0 NO 
1.0 NH3 

1 N2 

LNT does not have to be highly effective NSR 
catalyst in the combined NSR/SCR application    
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LNT/SCR Catalyst Synthesis 
   LNT layer monolith (from BASF) 
 

 
 

 
 

 
           
        *~4.6 g/in3 washcoat loading;  1.1wt.% PGM in γ-Al2O3 
 

   SCR top-layer contains Fe/ZSM5 or Cu/ZSM5 
  ~0.9 g/in3 washcoat loading (unless otherwise stated) 
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LNT1 LNT2 LNT3 

PGM (g/ft3)* 
(Pt:Rh = 7) 

90 90 90 

Ba (wt%) 14 14 14 

Ce (wt%) 0 17 34 



Dual-Layer Catalyst Structure 
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Comparison of LNT & 
LNT/SCR Lean-Rich Cycle 
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Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
Temperature: 300oC 



Comparison of LNT & 
LNT/SCR Lean-Rich Cycle 

10 
Sustained N2 production for entire lean period;  
due to slow NH3 release from Cu-Z & reduction 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
Temperature: 300oC 

Prominent dual N2 
peaks during rich & 
lean  
 
Rcn. of stored NH3 
with O2 & NOx during 
lean phase 
 
No NH3 for CuZ+LNT  



Summary of Results w/o CO2 & H2O* 
 Dual layer concept works 
 LNT/SCR has slightly lower NO conversion than 

LNT only 
 Low temperatures (< 225 oC):  Undesired 

oxidation of NH3 on Pt (to N2O) occurs due to 
trapped NH3 migrating to LNT layer 

 Higher temperatures (> 250 oC): Undesired 
oxidation of NH3 on Pt (to NO) occurs 

 LNT/SCR dual layer out-performs LNT+SCR single 
layer 

 Aged LNT/SCR can lead to improved performance 

11 *Liu, Y., M.P. Harold, and D. Luss,  Appl. Catal. B. Environ.  121-122  (2012)  239-251 



LNT/SCR:  H2  
Reductant in  
Presence of CO2  
& H2O 
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Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
(Both:  2.5% H2O, 2% CO2) 

     200            250           300          350        400 

Temperature (oC) 



LNT/SCR:  H2  
Reductant in  
Presence of CO2  
& H2O 
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Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
(Both:  2.5% H2O, 2% CO2) 
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LNT1 
250 oC 

LNT/SCR:  H2 Reductant in 
Presence of CO2 & H2O 

LNT/SCR:  Enhanced NOx 
conversion & N2 selectivity 
over wide temperature range 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
(Both:  2.5% H2O, 2% CO2) 



LNT/SCR Performance  
in Presence of CO2 & H2O 
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LNT1 
250 oC 

LNT:  Serves as 
NO2 generator 
during lean 
phase & NH3 
generator during 
rich phase 
 
LNT/SCR:  SCR 
stores NH3 
during rich and 
reacts with 
NO/NO2 during 
lean NO + NO2 + 2NH3     2N2  +  3H2O  

Fast SCR 



Ceria Addition 

   Ceria effects: 
   Improved low T performance 
   Mitigation of CO poisoning at low T 
   Promotes WGS reaction (CO + H2O  CO2 + H2) 
   Stabilization of Pt 
   Increased NH3 oxidation at high T 16 

LNT1 LNT2 LNT3 

PGM (g/ft3) 90 90 90 

Ba (wt%) 14 14 14 

Ce (wt%) 0 17 34 



Ceria Loading Effect 
Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 
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0% ceria 



Ceria Loading Effect 
Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 

18 
34% ceria 

0% ceria 



Ceria Loading Effect 

CeO2  beneficial 
 

CeO2  detrimental 
 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 

19 
34% ceria 

0% ceria 



LNT/SCR Dual-Layer:  CeO2 Axial Zoning  

20 Liu, Y.,  Y. Zheng, M.P. Harold, and D. Luss,  Appl. Catal. B. under review (2012). 

(Pt/Rh/BaO+Cu/ZSM5)              (Pt/Rh/BaO/CeO2+Cu/ZSM5) 
   



LNT/SCR: Ceria Zoning 
Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 

21 



   “Dual-Layer/Dual-Zone” Catalyst  

22 Liu, Y., M.P. Harold, and D. Luss,  in preparation (2012). 

   DC-IC: 
– First half:  CuZ-LNT1  
– Second half:  CuZ-

LNT3   
 

  Pt/Rh/BaO+Cu/ZSM5      Pt/Rh/BaO/CeO2+Cu/ZSM5 
    Ceria zoning:  achieves low  temperature activity 
enhancement & minimized high temperature ox id. of NH3 

 Aged LNT upstream  + Higher SCR loading beneficial 
 Lower PGM dispersion benefits NH3 selectivity 
 Higher loading of SCR sustains high NOx conversion 

  Further improvements w ith cycle timing 
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Dual Layer vs. Sequential: Comparison 
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Dual Layer vs. Sequential: Comparison 
Conditions: 
Lean: 500 ppm 
NO, 5% O2; 60s 

Rich: 2.5% H2; 5s 
With H2O and CO2 

CuZ-LNT1 1.0 cm + 
CuZ-LNT3 1.0 cm 
(Cu/ZSM-5, 0.9 g/in3)  

2x PGM 
1x SCR 

0.5x GHSV 



25 

Dual Layer vs. Sequential: Comparison 
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LNT1 0.5 cm + 
SCR  0.5 cm + 
LNT3 0.5 cm + 
SCR  0.5 cm 
(Cu/ZSM-5, 
2.0 g/in3) 

Conditions: 
Lean: 500 ppm 
NO, 5% O2; 60s 

Rich: 2.5% H2; 5s 
With H2O and CO2 

0.5x PGM 
1x SCR 

1x GHSV 
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Dual Layer vs. Sequential: Comparison 
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Dual Layer vs. Sequential:  Factors 

   LNT vs. SCR proximity:   
More NH3 oxidation on dual layer catalysts due to 
closer proximity of NH3 storage and Pt sites  

 
   Diffusion limitations:   
Dual layer catalyst has more extensive diffusion 
limitations; SCR top layer inhibits transport to LNT 
bottom layer  
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Conclusions 
 Dual-layer LNT/SCR works 

   Increased N2 yield, decreased NH3 yield  
   NOx conversion: depends on conditions & catalys 
 Close proximity of LNT and SCR functions important but 

segregated layers needed 

 Ceria addition to LNT helps on many fronts 
   Low temperature conversion 
   Lessens effects of CO inhibition  
   Mitigates effects of thermal degradation 

 Axial profiling & customized cycle timing hold promise   
 Further opportunities for optimization 

28 



THANKS! 
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Introduction 
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Storage & Reaction on Multi-Functional 
Catalysts in Exhaust Aftertreatment 

32 

Method Application Reaction Catalyst Stored 
Species 

TWC Spark-ignited 
gasoline  H2/CO/HC + O2 Pt/Pd/Rh/CeO2/Al2O3 O2 

DOC Diesel CO/HC + O2 Pt/Pd/zeolite-β/Al2O3 High MW HC 

DPF Diesel C  +  O2/NO2 Pt/cordierite PM 

NSR Lean burn, 
Diesel H2/CO/HC + NOx Pt/Rh/BaO/CeO2/Al2O3 NOx 

SCR Diesel NH3 + NO +NO2 Cu or Fe/zeolite NH3 

NSR + 
SCR 

Lean burn, 
Diesel 

H2/CO/HC + NOx 
NH3 + NO +NO2 

Pt/Rh/BaO/CeO2/Al2O3 
Cu or Fe/zeolite 

NH3, NOx, 
HC 

ASC Diesel NH3  +  O2 Cu/zeolite + Pt/Al2O3 NH3 

M. Harold, Current Opinion in Chem. Eng., 1, 1-9 (2012) 



Storage & Reaction on Multi-Functional 
Catalysts in Exhaust Aftertreatment 
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Method Application Reaction Catalyst Stored 
Species 

TWC Spark-ignited 
gasoline  H2/CO/HC + O2 Pt/Pd/Rh/CeO2/Al2O3 O2 

DOC Diesel CO/HC + O2 Pt/Pd/zeolite-β/Al2O3 High MW HC 

DPF Diesel C  +  O2/NO2 Pt/cordierite PM 

NSR Lean burn, 
Diesel H2/CO/HC + NOx Pt/Rh/BaO/CeO2/Al2O3 NOx 

SCR Diesel NH3 + NO +NO2 Cu or Fe/zeolite NH3 

NSR + 
SCR 

Lean burn, 
Diesel 

H2/CO/HC + NOx 
NH3 + NO +NO2 

Pt/Rh/BaO/CeO2/Al2O3 
Cu or Fe/zeolite 

NH3, NOx, 
HC 

ASC Diesel NH3  +  O2 Cu/zeolite + Pt/Al2O3 NH3 

M. Harold, Current Opinion in Chem. Eng., 1, 1-9 (2012) 
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Different LNT-SCR Architectures 
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LNT-SCR series configuration 
 

 
 
 
 
 
 
LNT-SCR layered configuration 

Substrate 
LNT 
SCR 

Substrate 
LNT 
SCR 

  Daimler 
    
 
 

  Ford  
 
 
 
 

 

  Honda 

Several architectures under investigation in DOE project 



NSR/SCR Technology 

NSR  SCR  

 LNT/SCR is promising non-
urea deNOx technology for 
light- & medium-duty diesel 
& lean burn gasoline 

 Synergistic benefits of 
LNT/SCR have been 
demonstrated:  Previous 
studies show increased NOx 
conversion by adding SCR 
unit downstream of LNT 

 Understanding of the 
coupling between LNT & 
SCR series-brick 
configuration is emerging 
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NSR/SCR:  A Different Role for the LNT 

NSR  

  NSR Target:  100% NOx conversion with 100% N2 selectivity 
 
  LNT:   2 NO  + 4 H2  +  O2    N2  + 4 H2O 
 

2 NO 1.0 N2 
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Objectives 

38 

 
• Gain understanding of impact of LNT-

SCR multilayer architecture 
 

• Determine impact of multilayer catalyst 
design variables and operating 
strategies 

 
• Provide data to develop LNT-SCR 

models for design and optimization 
 
 



Fundamental Issues/Questions 
 What should be proximity between LNT and SCR functions? 
 

 Does SCR layer always increase the overall NOx conversion 
or could it reduce it (e.g. serve as diffusion barrier)? 

 

 What are the optimal thicknesses and compositions of the 
LNT and SCR layers?   Pt dispersion? Ceria?  Fe- or Cu-
zeolite? 

 

 What about thermal durability?  What about migration of Pt 
from LNT layer to SCR layer? 
 

 How does the dual layer compare to sequential monolith 
configuration? 

 

     our goal is to answer some of these questions… 
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Summary of Results w/o CO2 & H2O* 

Without H2O & CO2 in feed, LNT/SCR has slightly 
lower NO conversion than LNT only   

 At low temperatures (< 225 oC) most reaction 
occurs in LNT layer with generated NH3 
effectively trapped by Cu-zeolite; trapped NH3 
desorbs to Pt layer & is oxidized to N2O   

 At higher temperatures (> 250 oC) undesired 
oxidation of NH3 on Pt (to N2O & NO) occurs 

40 

*Reference:  Liu, Y., M.P. Harold, and D. Luss,  Appl. Catal. B. Environ.  121-122  (2012)  239-251 



Results w/o CO2 & H2O 
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Typical Lean-Rich Cycle 
for PGM/BaO (LNT1) 

42 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 
Temperature: 250oC 



 
LNT vs. LNT/SCR:  Integral Results 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
No CO2 or H2O in feed 

LNT1 + CuZ: 
 
•  Slight decrease in NOx conversion 
 
•  Consumption of NH3 
 
•  Some increase in N2O 
 
•  Better catalyst than LNT1 + FeZ 
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Dual Layer LNT/SCR Catalysts  
 
 Dual layer LNT/SCR catalyst comprises: 

Bottom layer:  Pt/Rh/BaO/alumina      Top layer:  Fe-ZSM-5/alumina 
          0.7wt.%/0.07wt.%/20wt.%                       3-3.5 wt.% (10% washcoat loading) 

LNT only LNT/SCR (Fe-ZSM-5) 
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Dual Layer LNT/SCR Catalysts  
 
 Dual layer LNT/SCR catalyst comprises: 

Bottom layer:  Pt/Rh/BaO/alumina      Top layer:  Fe-ZSM-5/alumina 
          0.7wt.%/0.07wt.%/20wt.%                       3-3.5 wt.% (10% washcoat loading) 
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LNT only LNT/SCR (Fe-ZSM-5) 

Dual-layer catalyst: reduced NH3, increased N2O,  
but a small reduction in NOx conversion!  

?? 



Comparison: 
LNT vs. LNT/SCR (Fe- or Cu-ZSM5)  

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 
No CO2 or H2O in feed 

Cu/ZSM5 out-performs Fe/ZSM5 
under identical conditions 

46 



Comparison of Fe/ZSM5 and Cu/ZSM5 

Fe/ZSM-5 has lower  
standard SCR activity  
           &  
NH3 storage capacity 
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Conditions: 
500 ppm NO, 5% O2

 

500 ppm NH3 

Conditions: 
500 ppm NH3 
20 minute storage 



Low Temperature LNT/SCR Behavior 

48 

0

25

50

75

100

100 150 200 250 300 350 400

N
O

 C
on

ve
rs

io
n 

(%
) 

Feed Temperature (ºC) 

CuZ+LNT LNT



Low Temperature LNT/SCR Behavior 
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N2O Formation at Low Temperature 
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NH3 Oxidation to NOx at High Temp. 
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NH3 Oxidation to NOx at High Temp. 
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Mixed Washcoat Results 
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Mixed Washcoat Performance  

54 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
Temperature: 250oC 

Washcoat: 
Physical mixture of LNT1 & CuZ 
2.1 g/in3 LNT1, 0.9 g/in3 CuZ 



Mixed Washcoat Performance  
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Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
Temperature: 250oC 

Washcoat: 
Physical mixture of LNT1 & CuZ 
2.1 g/in3 LNT1, 0.9 g/in3 CuZ 

Liu, Y., M.P. Harold, and D. Luss,  Appl. Catal. B. Environ.  121-122  (2012)  239-251 

LNT & Cu/ ZSM5 mixture:  
  significant N2O at low  T 
significant NO2 generation & 
breakthrough 
most N2 made during lean 



LNT/SCR:  H2 Reductant  
in Presence of  
CO2 & H2O 

56 

LNT1 effluent 
at 250 oC 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
(Both:  2.5% H2O, 2% CO2) 

LNT/SCR:  Favorable 
NO2/NOx ratio for SCR 



CO + H2 Results 
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Experiments 
Reductant             CO2         Dual Layer   

     + H2O?       Catalyst  
 
   H2           No                 LNT1/Cu-ZSM5, Fe-ZSM5 
   H2           No                 LNT1/Cu-ZSM5 (mixed layer) 
   H2           Yes                LNT1/Cu-ZSM5  
   H2  +  CO         Yes       LNT1/Cu-ZSM5 
   H2  +  CO          Yes       LNT2/Cu-ZSM5 
   H2  +  CO          Yes       LNT3/Cu-ZSM5 
   H2  +  CO         Yes       LNT1+LNT3/Cu-ZSM5 
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LNT/SCR with 
CO + H2 Reductant 

59 

LNT:  Overall lower NOx 
conversion with CO in feed 
 
LNT/SCR: Increase in NOx 
conversion & N2 selectivity 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 

1.5% H2, 1% CO 

LNT1 

LNT1/SCR 

LNT1 

LNT1/SCR 

LNT1 

LNT1/SCR 



Ceria Loading Effect 
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Ceria Additon 
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LNT:  Impact of CeO2 Addition 

62 

rWGS:     H2  +  CO2    H2O + CO 
 
……. CO adsorbs on Pt crystallites 
 

WGS:     H2O  +  CO    H2 + CO2 
 
……. Cleans off Pt crystallites 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 



LNT:  Impact of CeO2 Addition 
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rWGS:     H2  +  CO2    H2O + CO 
 
……. CO adsorbs on Pt crystallites 
 

WGS:     H2O  +  CO    H2 + CO2 
 
……. Cleans off Pt crystallites 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
          or 2.5% H2, 1.0% CO 
(with 2.5% H2O, 2% CO2) 

Lower temperature performance not good in 
presence of CO – requires addl. measures 
 
Addition of CeO2 to LNT beneficial: 
  *  Provides additional NOx storage sites 
  *  M itigates CO inhibition 
  *  Promotes WGS chemistry 
 



CeO2 Promotion of WGS Reaction 

Pt/ Rh/ BaO/ CeO2  catalyst exhibits 
enhanced water gas shift activity  
 64 

WGS: H2O + CO  H2 + CO2  



Comparison of LNT2 & LNT3:  
Ceria Loading Effect 
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Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 



Effect of Ceria on LNT/SCR 
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Ceria increases cycle-
averaged NO conversion 
at low  temperature 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 

XH2  = 8%  

23%  

49%  



Effect of Ceria on LNT/SCR 

67 

Roles of ceria in 
LNT/ SCR: 
  
Increases NOx 
storage & NO 
conversion at low  
temperature 
 
 Promotes WGS 
reaction 

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 

XH2  = 8%  

23%  

49%  



LNT/SCR:  Ceria Zoning 
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UL-DH > UH-DL > CuZ-LNT2 
 
 
 

 
 
Sample 

 
Upstream 
Ceria 
Level 
(wt.%) 

 
Downstream 
Ceria Level 
(wt.%) 
 

CuZ-
LNT2 

17 17 

UL-DH 0 34 

UH-DL 34 0 

Nonuniform ceria works better 
 
 



LNT/SCR Dual-Layer:  CeO2 Axial Zoning  

Zoning of ceria: 
Achieves beneficial trade-off 

o Approaches  LNT3 
performance at low  
temperature 

 
o Approaches LNT1 

performance at high 
temperature 
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Liu, Y.,  Y. Zheng, M.P. Harold, and D. Luss,  Appl. Catal. B. under review (2012). 

   UL-DH-3: 
– First half:      CuZ-LNT1; aged 
– Second half:  CuZ-LNT3; 2.0 g/in3   

 

UL-DH-3 



Ceria Loading Effect 

Zoning of ceria: 
Achieves beneficial trade-off 

o Approaches  LNT3 
performance at low  
temperature 

 
o Approaches LNT1 

performance at high 
temperature 
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Aging Effects 
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Aging Effects:  Stabilization by Ceria 
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Aging:  600 oC for 100 hours in air 
 
Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich:  2.5% H2;  5s 
(with 2.5% H2O, 2% CO2) 

Aging reduces lowers NOx 
conversion for all temp.’s 
 
Ceria-free LNT/SCR shows 
large NH3 release 
 
Ceria-based LNT/SCR shows 
less thermal degradation 
 
SEM microprobe shows less 
Pt migration from LNT to SCR 



Ceria:  Mitigation of Pt Migration 
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Pt/Ptmax 

LNT/SCR  
interface 



LNT/SCR:  Effect of Aging & Loadinng 
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Improvement achieved w ith 
different reductant 
compositions 
 
UL-DH-3 superior to UL-DH-2: 
  Higher loading of CuZ layer 

 
 
Sample 

 
LNT1 
Activity 

 
LNT3 
Activity 

SCR 
Loading 
(g/in3) 

UL-DH-1 Fresh Fresh 0.9 

UL-DH-2 Aged Fresh 0.9 

UL-DH-3 Aged Fresh 2.0 



Ceria Loading & Aging Effects 
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Increased ceria results in 
higher NO conversion and 
generally higher N2 
selectivity 
 
Ceria slows degradation 
by stabilizing Pt and Pt 
migration  

Conditions: 
Lean: 500 ppm NO, 5% O2; 60s 

Rich: 2.5% H2;  5s 
 
Aging:  600 oC for 100 hours 



Results Matrix  
Reductant             CO2        

   + H2O?       Catalyst  
 
   H2           Yes                LNT1/Cu-Z  
   H2           No                 LNT1/Cu-Z (mixed layer) 
   H2  +  CO         Yes       LNT1, LNT3 
   H2  +  CO          No       LNT1/Cu-Z  LNT3/Cu-Z 
   H2  +  CO         Yes       LNT1+LNT3/Cu-Z 
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zoned 
ceria 

Final step:  optimize cycling parameters: 
Total cycle time, reductant feed intensity 



Optimization of Cycle Timing:   
Intensity of Reductant Pulse 

Optimal rich pulse time for fixed 
amt. reductant & storage time: 
  60 s lean, 10 s rich (1.25%  H2) 
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Comparisons of (a) NOx and (b) H2 conversion under 
different lean-rich cycles using a 2.0 g/in3 CuZ- Front 
Aged LNT1 back LNT3 dual-layer catalyst. 

Liu, Y., M.P. Harold, and D. Luss,  in preparation (2012). 

Rich Feed: 
             CH2 (%) 
60-20: 0.63 
60-10: 1.25 
60-5: 2.50 
60-3: 4.17 
2.5% H2O, 2% CO2 

Catalyst:  UL-DH-3 
Lean: 500 ppm NO, 5% O2,  
(with 2.5% H2O, 2% CO2) 



Optimization of Cycle Timing:  
Total Cycle Time 
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Optimal total cycle time w ith 
fixed reductant duty cycle: 
30 s lean, 5 s rich 

Catalyst:  UL-DH-3 
Lean: 500 ppm NO, 5% O2,  
Rich:  2.5% H2 
(with 2.5% H2O, 2% CO2) 
 
Varied lean/rich timing: 
Lean Rich 
60 s    10 s 
30 s   5 s 
  6 s   1 s 
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