Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Rh/Ba NOx Traps for Design and Optimization

Michael P. Harold, PI Vemuri Balakotaiah, Co-I University of Houston May 20, 2009

http://www.nasa.gov/vision/earth/everydaylife/archives/HP_ILP_Feature_03.html

ace_27_harold

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: Oct. 1, 2005
- End: Sept. 30, 2009
- 80% complete

Budget

- Total project funding
 - DOE: \$715,661
 - UH: \$189,699

Funding received

- FYO8: \$188,819
- FYO9: \$245,778

Barriers

- Mechanism & kinetics of LNT storage & regeneration not known
- Predictive LNT model needed for optimization

Partners

- Active collaborations
 - Ford Motor Company
 - BASF Catalysts LLC

Technical Barriers & Challenges

- Lean NOx Trap: Complex periodic catalytic reactor that holds promise for lean NOx reduction in diesel exhaust
 - Transient storage & reduction produces multiple products on multi-functional catalyst
 - Reduction occurs at interface of precious metal & storage components
 - Nonlinear coupling between chemistry & transport

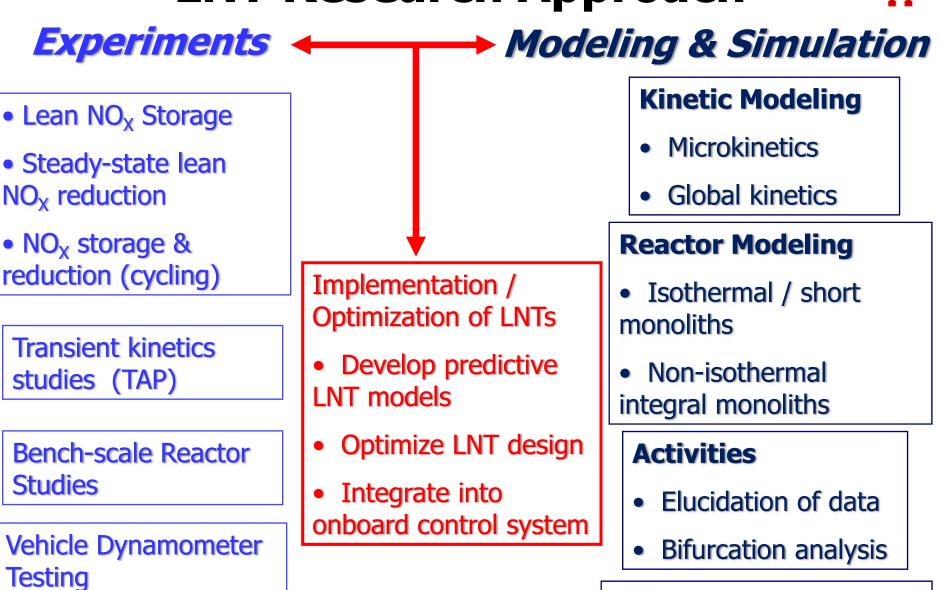
<u>Project Premise:</u> Development of predictive LNT reactor model containing main chemistry & transport processes is critical for understanding, design, & operation of lean NOx traps

Project Objectives

- Objective 1: Carry out fundamental studies of the transient kinetics of LNT regeneration
- Objective 2: Evaluate and compare the effect of different reductants on LNT performance
- Objective 3: Incorporate the kinetics findings and develop and analyze a first-principles based predictive LNT model for design and optimization
- Objective 4: Test the new LNT designs in UH heavy-duty diesel dynamometer facility

Project Milestones & Tasks

- Task 1: Carry out comprehensive mechanistic study of the regeneration of model Pt/Rh/Ba NSR catalysts with reductants H₂ and CO in the TAP reactor and TGA/DSC systems.
- Task 2: Evaluate performance of the model NSR catalysts in a bench-scale NOx trap using synthetic lean burn and diesel exhaust, with particular attention placed on differences in reductant type and injection protocols.
- **Task 3:** a. Develop and analyze a first-principles based predictive lean NOx trap model that incorporates a detailed understanding of the chemistry and transport processes.


b. Compare alternative NOx trap configurations and identify optimal designs and operating strategies.

Task 4: Test prototype NSR device in the exhaust stream of a diesel vehicle.

	<u>0-6</u>	6-12	12-18	18-24	24-30	31-36	37-42	43-48
Task 1	XXX	XXX	XXX	XXX	XXX	XXX	XXX	XXX
Task 2		XXX	XXX	XXX	XXX	XXX	XXX	Done
Task 3a	XXX	XXX	XXX	XXX	XXX	XXX	XXX	XX
Task 3b								XX
Task 4								XX

LNT Research Approach

Low-dimensional models for optimization & control

Active Collaborations

BASF Catalysts LLC (formerly Engelhard)

- Dr. Stan Roth, Dr. C.Z. Wan
- Builds off State of Texas / Engelhard funded project (2003-2006)
- 10 refereed publications on LNTs from 2004-2006
- BASF provided several series of model catalysts: Pt, Pt/Ba, Rh, Pt/Rh/Ba, Pt/Rh/Ba/Ce, Rh/Ce, etc.

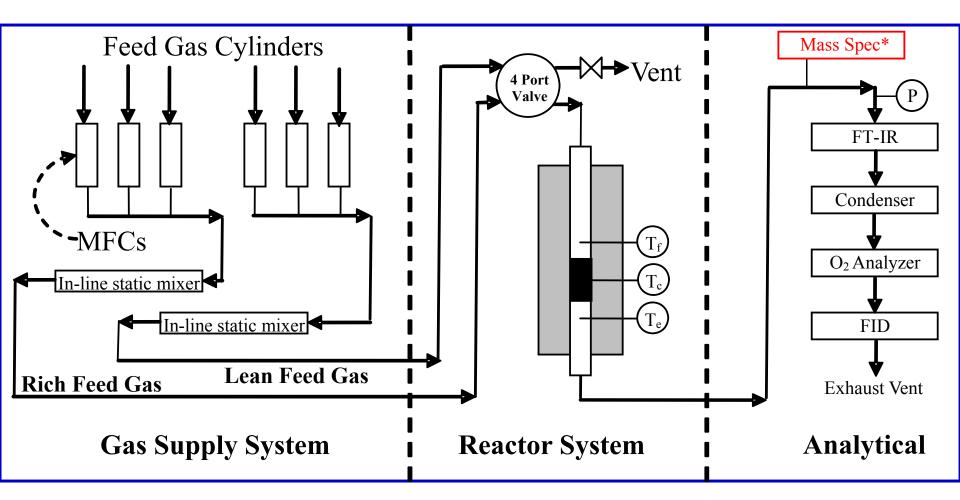
Ford Motor Company

- Dr. Bob McCabe, Dr. Joseph Theis
- Grant: Development of low-dimensional models of TWC and LNT converters for on-vehicle use
- Student intern during Summer 08: Divesh Bhatia

Facilities Utilized in Study

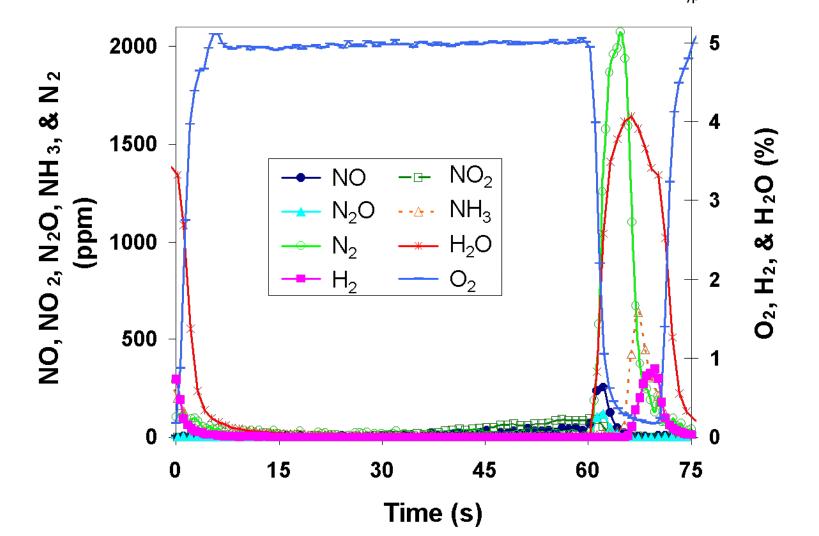
- Bench-scale reactor system for atmospheric pressure steady-state & cyclic operation studies of NSR chemistries on monoliths & powders
- TAP reactor system for ultrahigh vacuum flow transient studies of NSR chemistries on powders & monoliths
- Catalyst characterization equipment for PM dispersion and particle size, surface area, etc.
- Computer workstations for microkinetic and LNT modeling studies
- Heavy-duty chassis dynamometer system for evaluation of diesel aftertreatment devices installed on vehicles (existing) and advanced bench-scale system utilizing exhaust side stream (near completion)

Experimental Studies

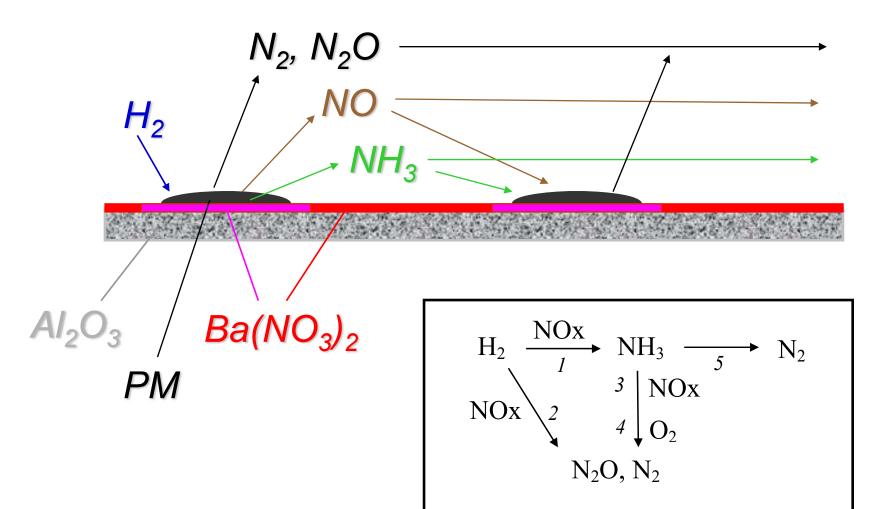

Accomplishments in FY08

Bench-scale reactor studies:

- 3 papers published
 - R4: Clayton, R.D., M.P. Harold, and V. Balakotaiah, "Selective Catalytic Reduction of NO by H₂ in O₂ on Pt/BaO/Al₂O₃ Monolith NOx Storage Catalysts," Appl. Catal. B. Environmental, **81**, 161-181 (2008).
 - R5: Clayton, R.D., M.P. Harold, and V. Balakotaiah, "NOx Storage and Reduction with H-2 on Pt/BaO/Al2O3 Monolith: Spatio-Temporal Resolution of Product Distribution," Appl. Catal. B. Environmental, 84, 616-630 (2008).
 - R6: Clayton, R.D., M.P. Harold, and V. Balakotaiah, "Performance Features of Pt/BaO Lean NOx Trap with Hydrogen as Reductant," AIChE J., 55, 687-700 (2009).
- Carried out detailed kinetics study of NO oxidation on Pt/Al₂O₃ & Pt/BaO/Al₂O₃
 - Identified issues of Pt deactivation & rate inhibition effects (NO, NO₂)
 - Data used to develop predictive kinetic model
 - Paper under review (R11: Bhatia, D., V. Balakotaiah, M.P. Harold, and R. McCabe, "Experimental and Kinetic Study of NO Oxidation on Model Pt Catalysts," J. Catalysis, submitted (March, 2009).
- Carried out systematic study of effect of Pt dispersion in Pt/BaO/Al₂O₃ on LNT performance
 - Compared storage, activity, and selectivity effects
 - Identified catalyst & conditions giving low or high NH₃ yield
 - Revisions to paper pending (R10: Clayton, R.D., M.P. Harold, V. Balakotaiah, C.Z. Wan, "Effect of Pt Dispersion on NOx Storage and Reduction in Pt/BaO/Al₂O₃ Catalyst," Appl. Catal. B. Environmental, revisions pending (March, 2009).


Bench-Scale Reactor System

* Mass spec installed 6/07


Effluent Composition versus Time: Storage and Reduction

Lean: 500 ppm NO and 5% O_2 (60s); **<u>Rich:</u>** 4.3% H_2 1.5% O_2 $S_{N,p}$ = 0.7 (10s)

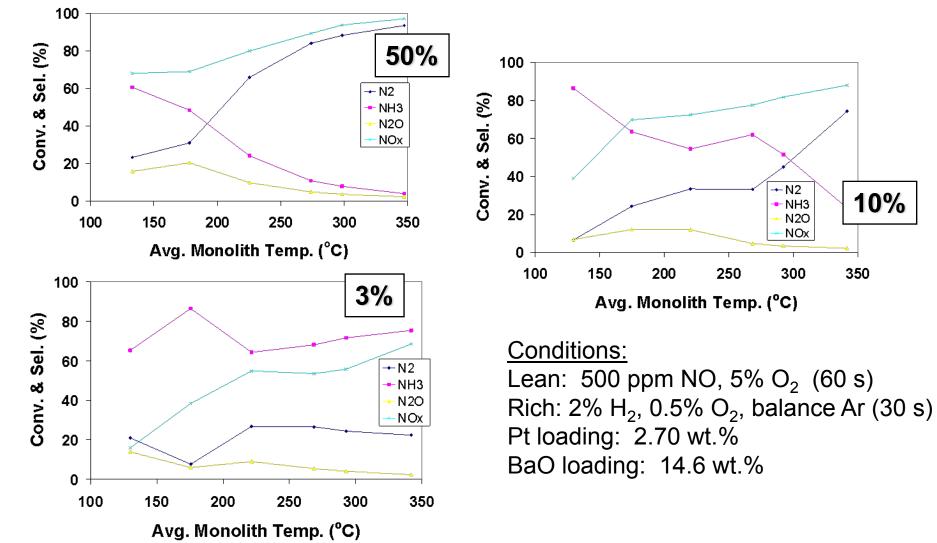
Phenomological Picture of NSR with H₂ as Reductant

10%

350

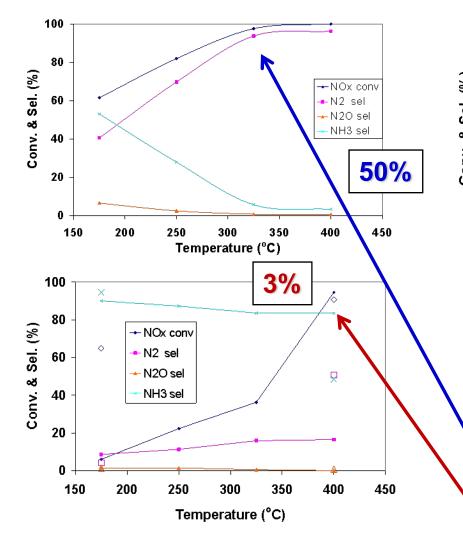
-N2

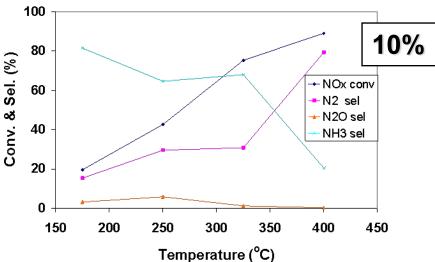
NH3


N20

NOx

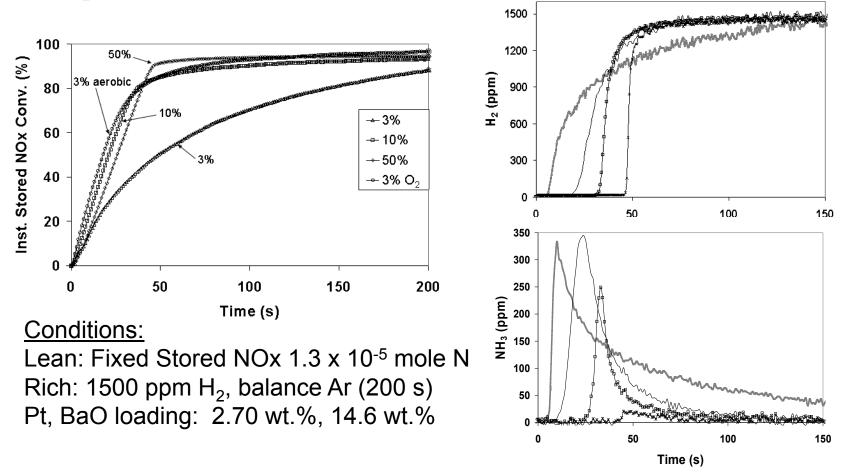
300


250


Effect of Pt Dispersion

Significant effect of Pt dispersion on conversion & selectivity

Effect of Pt Dispersion: Fixed Stored NOx



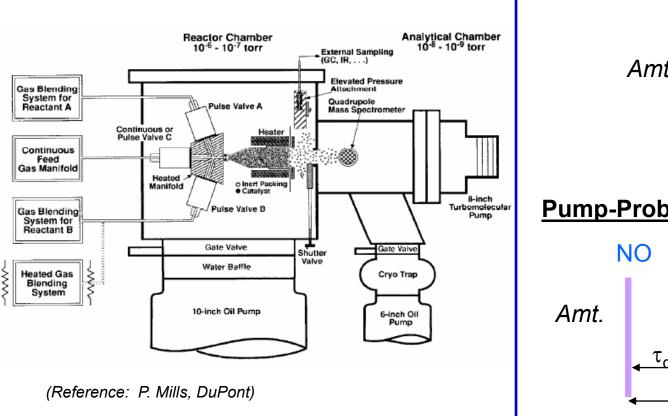
Conditions:

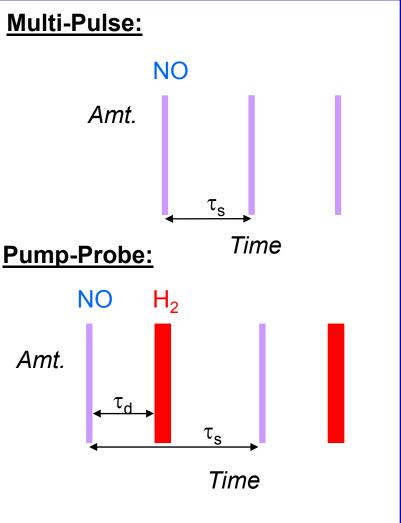
Lean: Fixed Stored NOx 1.3 x 10^{-5} mole N Rich: 1500 ppm H₂, balance Ar Pt, BaO loading: 2.70 wt.%, 14.6 wt.%

High dispersion: NOx to N₂ *Low dispersion:* NOx to NH₃

Transient Reduction: Effect of Pt Dispersion with Fixed Stored NOx

- High dispersion leads to faster reduction & N_2
- Low dispersion leads to slower reduction to NH₃

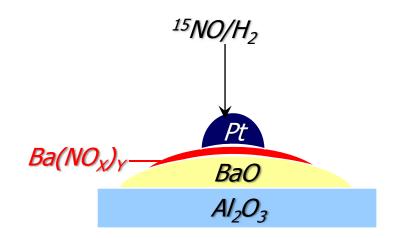


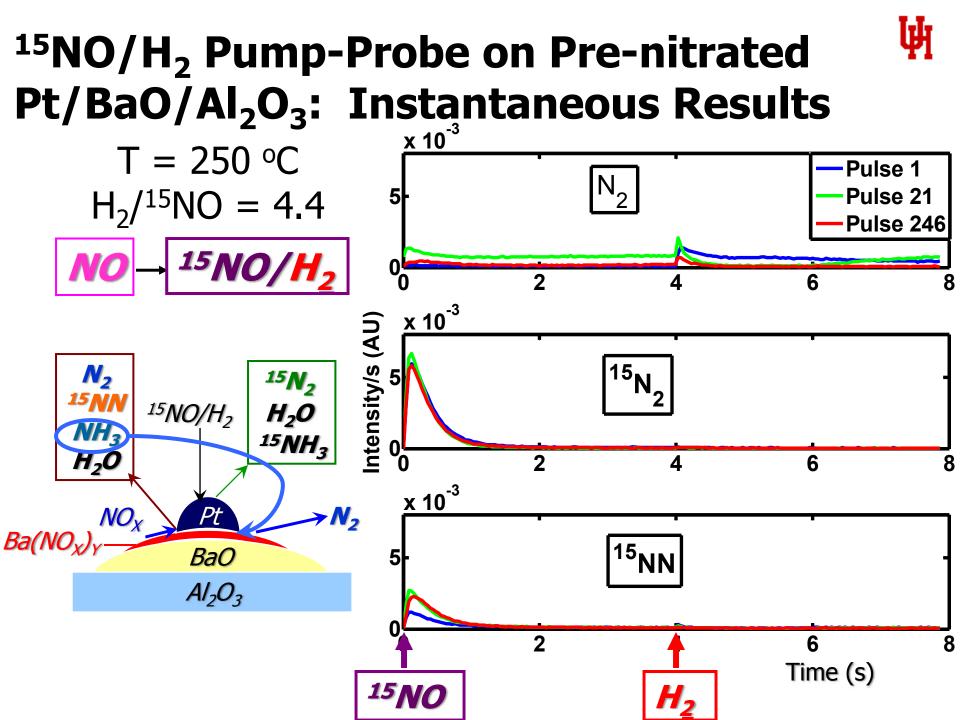

Accomplishments in FY08, cont.

TAP reactor studies

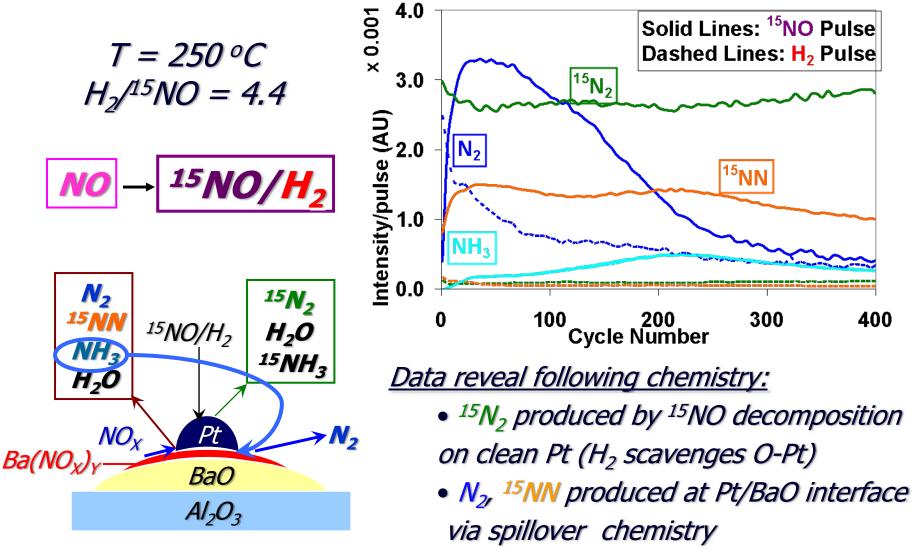
- Paper under review (R9: Kumar, A., V. Medhekar, M.P. Harold, and V. Balakotaiah, "NO Decomposition and Reduction Studies on Pt/Al₂O₃ Powder and Monolith Catalysts Using the TAP Reactor," Appl. Catal. B. Environmental, revisions pending; March, 2009).
- Demonstrated use of monolith catalyst in TAP reactor for first time (R9)
- Provided performance data of Pt/BaO/Al₂O₃ catalysts for microkinetic models
- Isotopic ¹⁸O₂ study of NO oxidation and NOx storage
- Isotopic ¹⁵NO decomposition and ¹⁵NO + H₂ pumpprobe experiments provided insight about pathways for N₂, NH₃ production & Pt/BaO coupling effects

Temporal Analysis of Products (TAP)





Isotopic TAP Study: ¹⁵NO/H₂ Pump- ¹ Probe on Pre-nitrated Pt/BaO/Al₂O₃



Objective: Follow formation of N_2 and NH_3 during ¹⁵NO and H_2 pulses to quantify source of products (i.e. stored NO_X or gas phase NO)

¹⁵NO/H₂ Pump-Probe on Pre-nitrated Pt/BaO/Al₂O₃: Integral Results

H-Pt + $Ba(NO_3)_2 + {}^{15}N-Pt$

H

Modeling Studies

Accomplishments in FY08

Modeling

3 papers published

- R3: Xu, J., R.D. Clayton, V. Balakotaiah and M.P. Harold, "Experimental and Microkinetic Modeling of Steady-State NO Reduction by H₂ on Pt/BaO/Al₂O₃ Monolith Catalysts," Appl. Catal. B. Environmental, **77**, 395-408 (2008).
- R7: Bhatia, D., V. Balakotaiah and M.P. Harold, "Bifurcation Analysis of CO and H₂ Oxidation on Pt/Al₂O₃ Monolith Reactors." Chem. Eng. Sci. 64, 1544-1558 (2009).
- R8: Xu, J., M.P. Harold, and V. Balakotaiah, "Microkinetic Modeling of Steady-State NO/H₂/O₂ on Pt/BaO/Al-₂O₃ Monolith Catalysts," Appl. Catal. B. Environmental, doi:10.1016/j.apcatb.2008.11.017 (2008), in press.

Kinetic modeling

- Developed microkinetic model for $H_2/NO/O_2$ on Pt (R3)
- Developed micro & global kinetics for NO oxidation on Pt (R11)
- Developed micro & global kinetics for co-oxidation of H_2 & CO on Pt (R7)

NOx trap reactor modeling

- Incorporated microkinetic model into short monolith model; predicted steady-state $H_2/NO/O_2$ on Pt from earlier bench-scale study (R3)
- Incorporated $H_2/NO/O_2$ microkinetic model into LNT model with NO/O₂ oxidation and stored NOx chemistry; currently evaluating model vs. LNT bench-scale data
- Developed low dimensional monolith reactor model for steady-state and transient operation of monolith reactors (R13)

LNT Monolith Model

Fluid Phase Mass balances

$$\frac{\partial X_{jm}}{\partial t} + \overline{u}_f \frac{\partial X_{jm}}{\partial Z} = -k_{jc} \frac{1}{R_{\Omega}} (X_{jm} - X_{js})$$

Energy Balance

$$\rho_f c_{pf} \left(\frac{\partial T_m}{\partial t} + \overline{u}_f \frac{\partial T_m}{\partial Z} \right) = -h_f \frac{1}{R_{\Omega}} (T_m - T_s)$$

Surface balances (for species j on site i)

$$C_{i} \frac{\partial \theta_{ji}}{\partial t} = R^{j}_{adi} - R^{j}_{dei} - \sum v_{j} R_{rxn}$$

Solid Phase

Energy Balance $\delta_W \rho_W c_{pW} \frac{\partial T_s}{\partial t} = \delta_W k_W \frac{\partial^2 T_s}{\partial Z^2} - h_f (T_s - T_m) + \delta_c ((-\Delta H_{rxn}) R_{rxn})_{Pt}$

Interphase

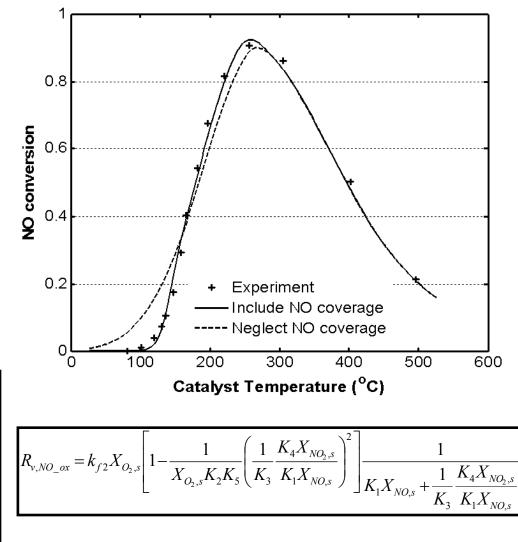
Site Balance

$$C_{o}k_{jc}(X_{jm} - X_{js}) = \delta_{c}(R^{j}_{ad} - R^{j}_{de})_{BaO} + \delta_{c}(R^{j}_{ad} - R^{j}_{de})_{Pt}$$

$$\sum \theta_{ji} + \theta_{vi} = 1$$

NO Oxidation on Pt Catalysts

- NO oxidation rate on Pt/Al_2O_3 & $Pt/BaO/Al_2O_3$:
 - Rate inhibited by NO and NO₂
 - Rate limited by kinetic (O₂ adsorption) and thermodynamic factors
 - Global kinetic model developed
 - Transient kinetics complicated by uptake of NO₂ on Al₂O₃ & BaO and oxidation of Pt


$$1: NO + Pt \longleftrightarrow NO - Pt$$

$$2: O_2 + Pt \longleftrightarrow O_2 - Pt$$

$$3: NO - Pt + O - Pt \longleftrightarrow NO_2 - Pt + Pt$$

$$4: NO_2 + Pt \longleftrightarrow NO_2 - Pt$$

$$5: O_2 - Pt + Pt \Longleftrightarrow 2O - Pt$$

Reaction System: Steady State \P NO + H₂ on Pt/Al₂O₃

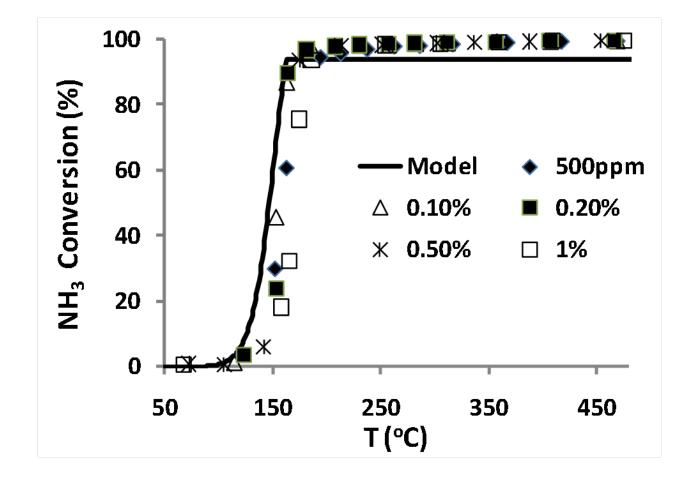
S1: $NO + Pt \leftrightarrow NO - Pt$ $S2: H_{\gamma} + 2Pt \iff 2H - Pt$ S3: $NO - Pt + H - Pt \iff N - Pt + OH - Pt$ $S4: N_2O + 2Pt \leftrightarrow NO - Pt + N - Pt$ S5: $H - Pt + O - Pt \leftrightarrow OH - Pt + Pt$ S6: $H - Pt + OH - Pt \rightarrow H_2O + 2Pt$ $S7: N_{2} + 2Pt \leftarrow 2N - Pt$ S8: $NO - Pt + Pt \iff N - Pt + O - Pt$ $S10^*: N - Pt + 3H - Pt \leftrightarrow NH_3 - Pt + 3Pt$ S13: $NH_3 + Pt \leftrightarrow NH_3 - Pt$ $S14: O_{\gamma} + 2Pt \iff 2O - Pt$ S15: $NO - Pt + O - Pt \iff NO_2 - Pt + Pt$ S16: $NO_2 + Pt \leftrightarrow NO_2 - Pt$

<u>Model Development</u> <u>Steps:</u>

- Formulate main mechanism based on data trends
- Utilize literature kinetics where possible
- Maintain thermodynamic consistency
- Do sensitivity analysis; tune key parameters

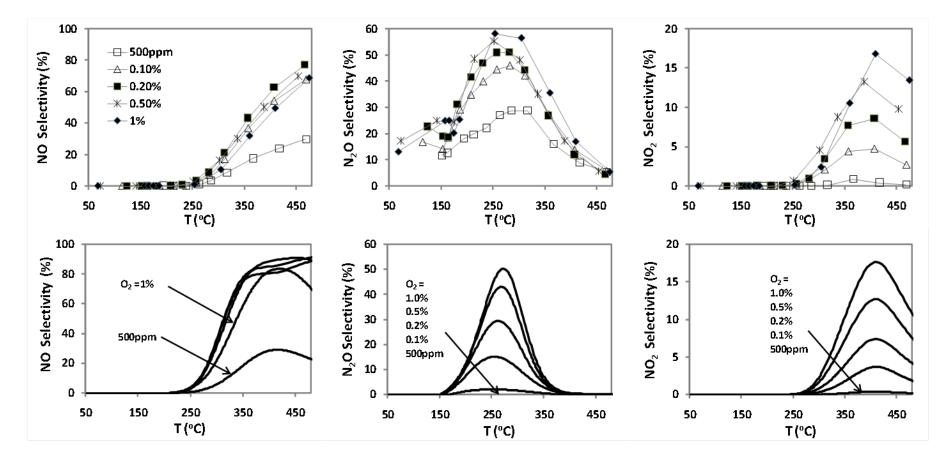
Reaction System: Steady State NO + H_2 + O_2 on Pt/Al_2O_3

- Four additional hybrid steps involving NH_3 :
- S17 $NH_3 Pt + 30 Pt \rightarrow N Pt + 30H Pt$

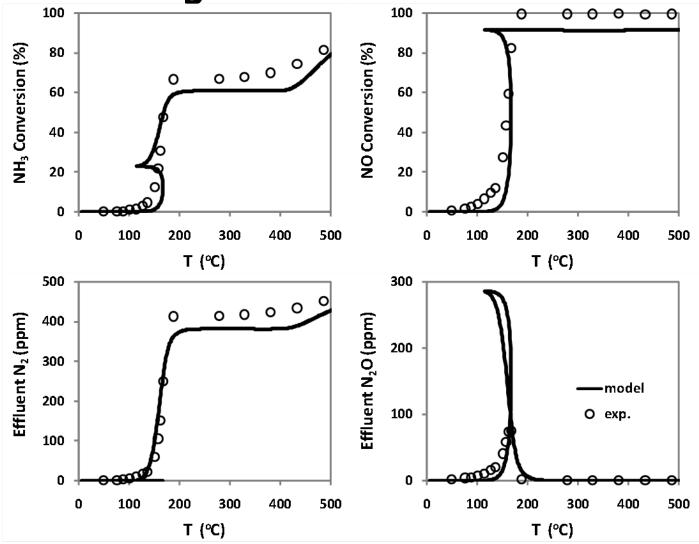

NH₃ oxidation

S18 $NH_3 - Pt + 30H - Pt \rightarrow N - Pt + 3H_2O + 3Pt$

S19 $NH_3 - Pt + 3NO - Pt + 3Pt \rightarrow 4N - Pt + 3OH - Pt$ NH₃ oxidation by NO


S20 $NO - Pt + 3H - Pt \leftrightarrow NH_3 - Pt + O - Pt + 2Pt$ NH₃ formation by NO+ H₂

Comparison of Experiment & Model: $\frac{1}{9}$ NH₃ + O₂ on Pt: Ammonia Conversion


Model captures light-off & insensitivity to O₂ concentration

Comparison of Experiment & Model: \mathbb{H}_{3} + O₂ on Pt - Product Selectivities

Model captures trends in product selectivities

Comparison of Experiments & Model: NH₃ + NO on Pt

Model captures nonlinear trends with temperature

Year 4 Activities: Experiments

- Conduct bench-scale and TAP experiments on additional catalyst types
 - Complete study of Pt dispersion for Pt/BaO catalysts
 - Evaluate effect of Rh & CeO₂ with H₂ as reductant
 - Carry out isotopic studies using ¹⁵NO and/or ¹⁸O₂
 - Carry out evaluation of stratified monolith configurations
 - Determine if improved performance with reduced reactor volume, precious metal
 - Carry out testing of selected LNTs with engine exhaust in dynamometer facility
 - Compare synthetic feed to vehicle feed

Щ

Year 4 Activities: Modeling

- Further upgrade microkinetic model through specific kinetic measurements in bench-scale & TAP reactors
- Incorporate upgraded kinetic model into integral transient LNT monolith reactor
 - Converge on simplest regeneration and storage chemistry that predicts data
- Use LNT model to investigate different NOx trap operating strategies and designs
 - Areas of focus: Maximize NH₃ production, maximize N₂ production
 - Guide experimental efforts and verification

Microkinetic Model Used for LNT Model Development

Pt Chemistry

 $O_{2}(g) + 2Pt = 2O-Pt$ $H_2(q)+2S=2H-Pt$ NO(q)+Pt=NO-Pt $2N-Pt=N_2(g)+2Pt$ $NO_2(q)+s=NO_2-S$ O-Pt+H-Pt=OH-Pt+Pt $OH-Pt+H-Pt=H_2O(g)+2Pt$ NO-Pt+Pt=N-Pt+O-Pt O-Pt+NO-Pt=NO₂-Pt+Pt $N-Pt+3H-Pt=NH_3-Pt+3Pt$ $NO-Pt+3H-Pt=NH_3-Pt+O-Pt+2Pt$ $NH_3(g)+Pt=NH_3-Pt$ NO-Pt+H-Pt=N-Pt+OH-Pt $N_2O(g)+2Pt=NO-Pt+N-Pt$ NH_3 -Pt+3NO-Pt+3Pt=4N-Pt+3OH-Pt NH_3 -Pt+3OH-Pt=3H₂O+N-Pt+3Pt NH_3 -Pt+3O-Pt=N-Pt+3OH-Pt

Storage Chemistry

 $NO_2(g)+BaO=BaO-NO_2$ $BaO-O+NO(g)=BaO-NO_2$ $BaO-O+NO_2(g)=BaO-NO_3$ $BaO-NO_3+NO_2(g)=Ba(NO_3)_2$ $2BaO+O_2(g)=2BaO-O$

Spillover Chemistry at Pt/Ba Interface

NO₂-BaO+Pt=O-BaO+NO-Pt

- •Pt chemistry from Xu et al. (2009)
- •BaO chemistry is from literature (Olsson et al.)

•Storage & spillover reactions provide Pt/BaO coupling effects

Summary

- Project on track:
 - Regeneration of model Pt/BaO LNTs: Combined experiments & modeling reveal complex spatio-temporal effects and close coupling between Pt & BaO
- 9 refereed publications (plus 4 under review)
- Near-term (FY09) challenges:
 - Converge on microkinetic treatment of Pt/BaO interface
 - Utilize LNT model for optimization
 - Conduct testing with diesel engine exhaust
 - Complete several more manuscripts