2013 DOE Vehicle Technologies

U.S. Department of Energy Merit Review

JCI PHEV System Development-USABC

Avie Judes Johnson Controls, Inc. May 13, 2013

Project ID #: ES005

This presentation does not contain any proprietary, confidential or otherwise restricted information.

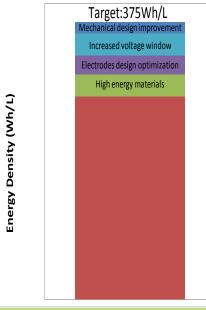
Johnson Controls, Inc.

Overview

Timeline		Barriers	
Project Start	April 2012	At Program Start:	
Ctratab Casla Addad		Higher cell energy density is targeted	
Stretch Goals Added Se	ptember 2012	 Cell cost reduction required Abuse tolerance improvements needed 	
Project Finish	March 2014		
·		<u>Currently:</u>	
Percent Complete *	45%	Higher density materials with lower life	
* Through 20 Each 2012		 Higher energy density w alt. processes Higher voltage with optimized materials 	
* Through 28-Feb-2013		right voltage with optimized materials	
Budget		Partners	
Total Project Funding	\$5,481K	USABC Program Lead: Renata Arsenault	
Cost Sharing with USABC	50%	Ũ	
Total On and EV(40	¢00417	DOE Contract Manager: Eric Heim	
Total Spend FY12 Total Spend FY13*	\$931K \$942K	ANL Cell Electrical Testing: Lee Walker	
	ΦϿϞϲΝ	ANL Cell Electrical Testing: Lee Walker	
* Through 28-Feb-2013		NREL Cell Thermal Testing: Matt Keyser	

Objectives - High Level

- Delivered baseline PHEV2 energy cells at start of program. 9* cells at ANL for testing.
- Deliver 18* mid program improved PHEV2 energy cells to ANL. Spring 2013.
- Deliver 38* end of program improved PHEV2 energy cells to NREL, SNL, and ANL.
- Improve low temperature cell performance.
- Target 350 Wh/L for the PHEV2 energy cell
- Target 250 \$/kWh or lower for the PHEV2 energy cell.
- Target EUCAR 4 rating or better on all abuse tests.
- Include high temperature separators as part of cell build & test.


^{*} Original program SOW deliverables to ANL, SNL, and NREL modified at July 2012 quarterly review. Was 45 baseline, 60 mid term, and 45 end of program cells.

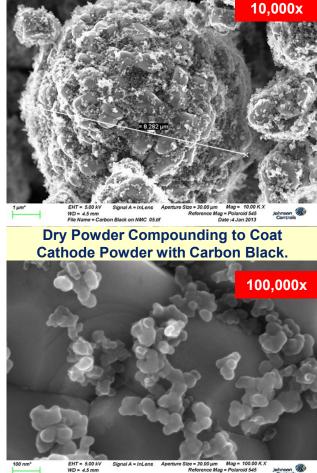
- High Energy Chemistry
 - Optimize electrodes design
 - Target 375 Wh/L in PHEV2 package and 5-10% cost improvement
 - Risks include shorter life and less abuse tolerance
- High Energy Cathode
 - Investigate Li rich layered-layered oxide structure to achieve higher voltage and capacity.
 - Target 450 Wh/L in PHEV2 package and 10-20% cost improvement
 - Risks include unknown cycle / calendar life and abuse tolerance
- Mechanical Component Opportunity
 - •Target 5% energy density increase and 30-50% cost reduction of cell housing
- * Stretch goals added at request of USABC September 2012

Objectives – By WBS

WBS	Proposed Area	Progress
1.0	Higher Energy Materials	
2.0	Electrode Processing & Design Optimization	30-45%
3.0	Increased Voltage	
4.0	Mechanical Design & Advanced Mfg.	
5.0	Abuse Tolerance Improvement	

Investigate higher energy materials in four primary areas;

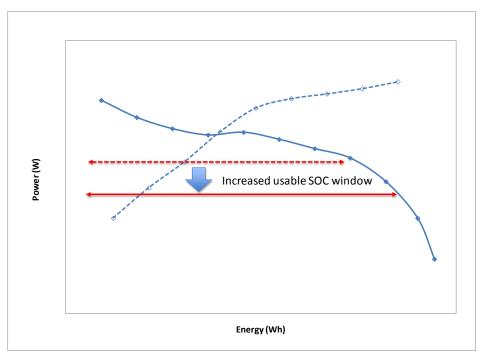
- 1. Blended cathode materials
 - Evaluate and mixing of materials.
 - Validate optimum composition of mixture.
 - Understand impact of mixture on performance, life, and abuse tolerance.
- 2. High nickel content NMC
 - Evaluate a variety of materials / suppliers.
 - Test in prismatic PHEV2 cell format.
- 3. New generation of graphite
 - Evaluate a variety of materials / suppliers.
 - Test in prismatic PHEV2 cell format.
- 4. Lithium ion rich NMC material (stretch goal)
 - Preliminary evaluation vs. USABC requirement


Approach / Strategy – WBS 2.0 Electrode Processing & Design Optimization

Investigate material processing in four primary areas;

- 1. Dry powder compounding
 - Focus on reduced solvent or no solvent mixtures.
 - Start with pouch cell construction and evaluation.
- 2. Alternative binder and conductors
 - Investigate alternative carbon conductors.
 - Use High Molecular Weight binder.
 - Determine effect of solvent reduction.
 - Start with pouch cell construction and evaluation.
- 3. Water based binder evaluation for cathode
 - Apply water based binder and perform coating trials.

- 4. Lower power to energy ratio
 - Evaluate high loading & high density combinations (stretch goal).
 - Combine efforts mentioned above to determine impact on electrode design.



Approach / Strategy – WBS 3.0 Increased Voltage & SOC Window

Investigate increased voltage in two primary areas;

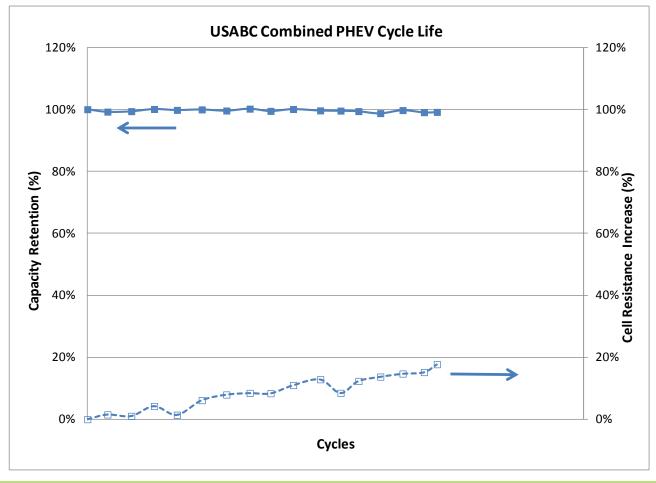
- 1. Increase upper voltage limit
 - Evaluate on baseline cells to establish early understanding
 - Investigate electrolyte additives to maintain or enhance performance and life.
- 2. Expand range of usable State of Charge (SOC)

Approach / Strategy – WBS 4.0 Mechanical Design & Advanced Mfg.

Investigate mechanical and manufacturing improvements in three primary areas;

- 1. Improved Energy Density
 - Optimize the cell packaging.
 - Increase the coated electrode width.
 - Minimize the impact of components on the active material volume.
- 2. Optimize Cell Connections
 - Balance Current Collector design for cost, thermal, and electrical performance.
 - Evaluation of cell interconnection methods and materials.
- 3. Alternatives to external and internal cell insulation
 - Investigate methods to insulate cell to cell.
 - Low cost neutral enclosure (stretch goal)

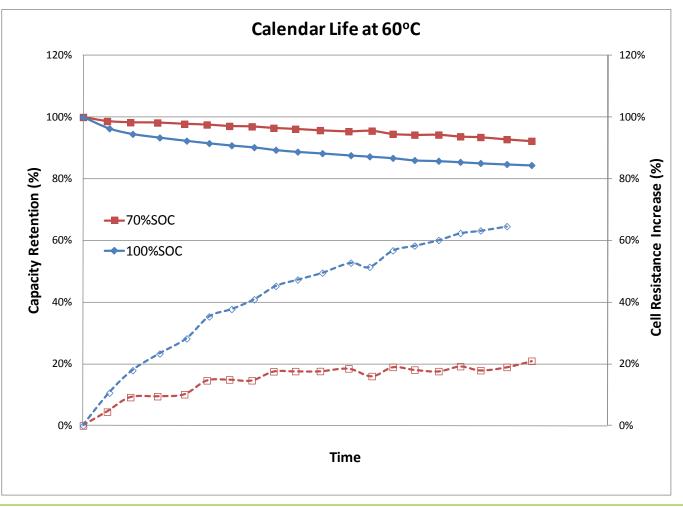
Approach / Strategy – WBS 5.0 Abuse Tolerance Improvement


Investigate improved abuse tolerance in three primary areas;

- 1. High temperature separator
 - Evaluate a variety of products for impact on performance
- 2. Heat resistance layer coating on electrodes
 - Start with baseline electrode from previous program
 - Include first year improved electrode options.
- 3. Electrolyte additives
 - Start with baseline electrolyte mixture from previous program
 - Evaluate a variety of additives to enhance abuse tolerance for higher capacity cell design. As appropriate, additives to be combined to determine interaction.

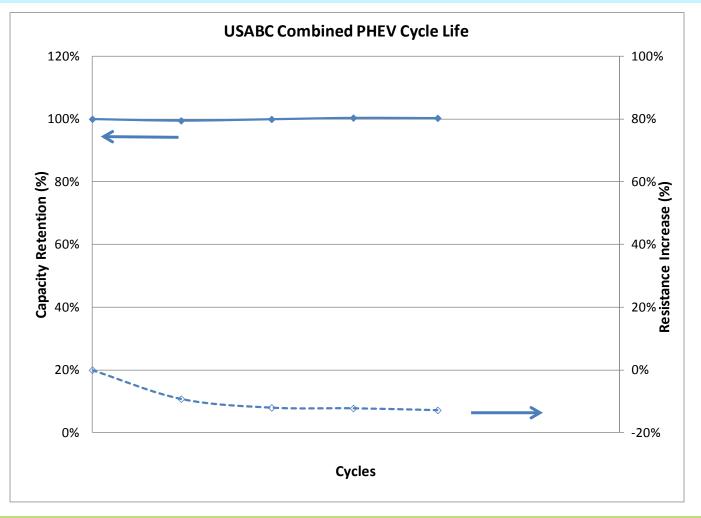
Technical Accomplishments – Prismatic Cells in Last Program USABC PHEV Cycle Life

- Continue to test prismatic cells from last USABC PHEV program
- Excellent cycle life will meet with USABC target.



Technical Accomplishments – Prismatic Cells in Last Program Calendar Life

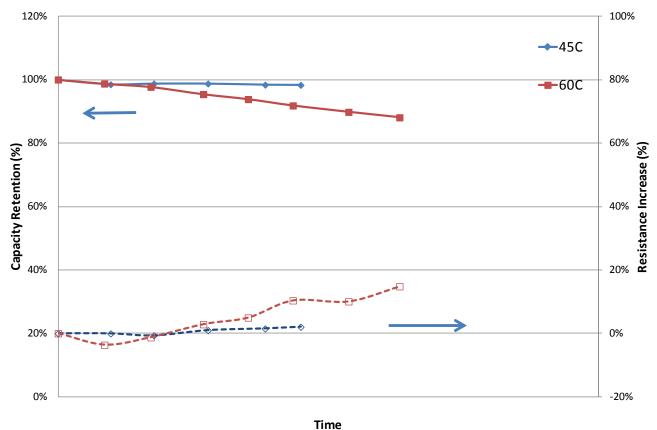
• Excellent calendar life at elevated temperatures



Johnson Controls, Inc.

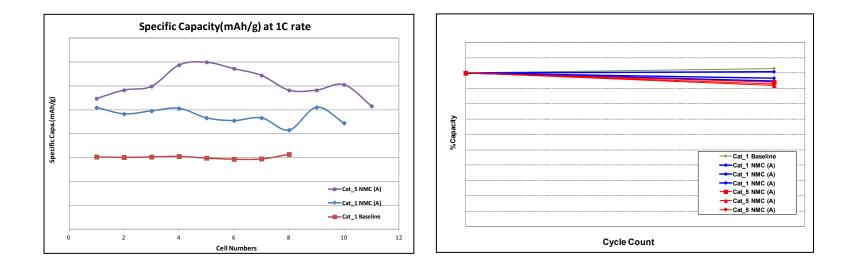
Technical Accomplishments – Baseline Prismatic Cells in Current Program USABC PHEV Cycle Life

• Excellent cycle life is projected to meet with USABC target.



Technical Accomplishments – Baseline Prismatic Cells in Current Program Calendar Life

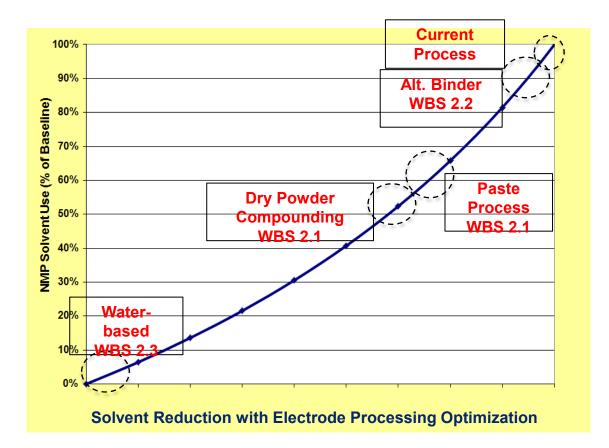
• New electrolyte additive: the resistance increase during calendar life at elevated temperatures is significantly reduced.


Baseline Calendar Life at 100%SOC

Johnson Controls, Inc.

Technical Accomplishments – WBS 1.0 Higher Energy Materials

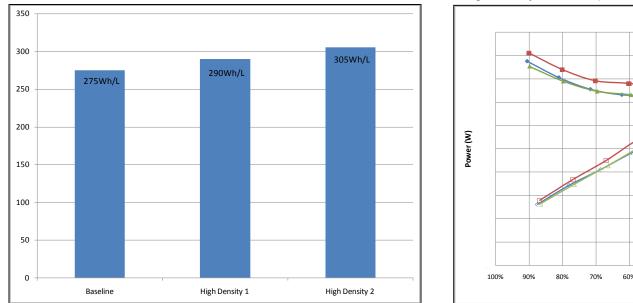
- · Evaluated different cathode active material mixtures
- High Ni content NMC (A) provided improvements in several areas

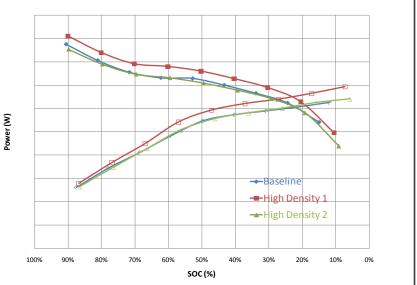


- High Ni NMC (A) has higher specific capacity
- Similar capacity retention in cycle life at elevated temperature

Technical Accomplishments – WBS 2.0 Electrode Processing & Design Optimization

- Evaluated 2 new processes: Dry Powder Compounding and Paste Mixing with good results
- Tested High Molecular Weight Binders in mixtures successfully
- Used lower amounts of solvent or alternative (water) in mixing process with good results

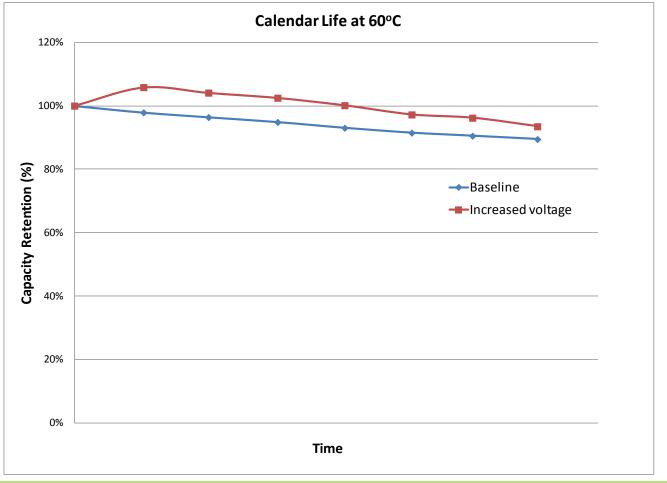




Technical Accomplishments – WBS 2.0 Electrode Processing & Design Optimization

• Evaluated high loading & high density combinations with indication of optimal choices

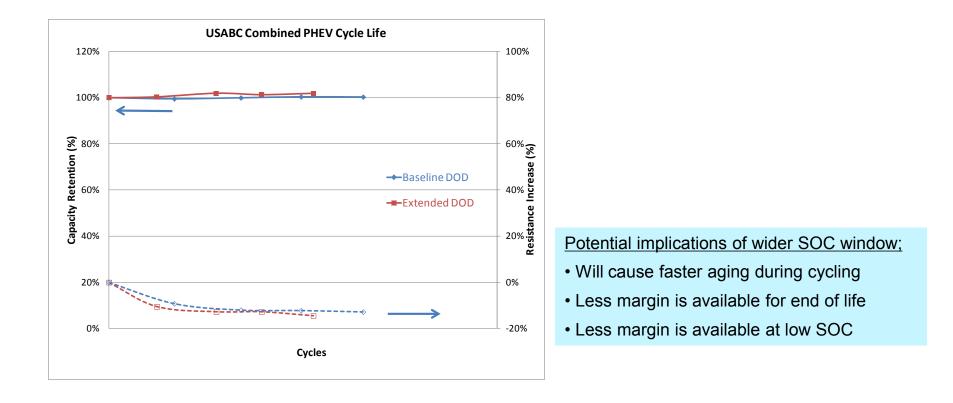
High density 1 = +5% energy density increase High density 2 = +11% energy density increase High density 1 = slightly higher power than baseline High density 2 = same power as baseline



• Similar performance in cycle life and calendar life at elevated temperatures

Technical Accomplishments – WBS 3.0 Increased Voltage & SOC Window

- Evaluated higher cell upper voltages
- Investigated electrolyte and electrolyte additives for higher voltage



Technical Accomplishments – WBS 3.0 Increased Voltage & SOC Window

- Evaluated extension of usable SOC window
- Both resistance and capacity remain stable at the higher DOD

- 1. Improved Energy Density
 - Cans with 20% thinner walls were produced.
 - Minimized foil margins with optimized current collector design for assembly.
 - Developed new cell terminals to reduce the impact on active material volume.
 - Developed a new process for closing the cell.
- 2. Optimize Cell Connections
 - Developed and built cells with new current collectors that reduce cost and improve the structural integrity of the cell.
 - Identified the preferred process for cell interconnections.
- 3. Alternatives to external and internal cell insulation
 - Evaluated coating methods / materials to replace film wrap.
 - Internal voids and external abrasion resistance remain a challenge.
 - Sampled a low cost, neutral enclosure. (Stretch Goal)

High temperature separator

- Evaluated different versions of separators
- Lower dielectric properties than standard separators.
- All versions show excellent calendar life and power delivery.

Heat resistance layer coating onto electrode

- Variables evaluated included: thickness, coverage, and uniformity.
- Used oven test to determine robustness of coating.

Electrolyte additives

- Cathode additives delayed the thermal reaction in overcharge.
- Good cycle life

□ Argonne National Laboratory – Electrical Testing of Cells

- Quarterly update on prior program results.
- Cells provided Aug 2012 for baseline testing.
- Mid term and end of program cells to be provided.

□ National Renewable Energy Laboratory – Thermal Characterization

- Quarterly update on prior program results.
- To occur using mid term and end of program cells.

Proposed Future Work

- Deliver mid program cells that demonstrate first year progress
 - □ Complete evaluation of electrode materials for cathode and anode
 - Complete selection of optimized material processing method
 - Determine best way to implement higher voltage limit and wider SOC window
 - Demonstrate cost reduction options for mechanical elements
 - □ Characterize performance of high temperature separator and heat resistance layer coated electrode
 - Deliver end of program cells that include second year accomplishments

Summary

- Evaluation of cells from prior USABC program continue at ANL and NREL
- Baseline for program is VDA PHEV2 lithium ion, prismatic format cell
 - Design was direct outcome of prior USABC program.
 - Delivered cells to ANL for evaluation August 2012.
- □ Higher nickel NMC provides more energy density, but reduced life
- New processes of Dry Compounding, Paste Mixing, with lower or no solvent usage provide good results in calendar and cycle life testing with higher energy / power.
- □ Higher cell voltage provides a linear boost in capacity. Electrolyte additives evaluated to address stress of increased potential.
- □ Expanded State of Charge (SOC) window. Impact on life to be determined.
- □ Use of high temperature separator, heat resistance layer coated electrode, and electrolyte additives improved abuse tolerance and cell performance

