2011 DOE Vehicle Technologies

U.S. Department of Energy Merit Review

JCS PHEV System Development-USABC

Scott Engstrom Johnson Controls – Saft May 10, 2011

Project ID #: ES005

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Overview

Timeline

Project Start – June, 2008

Scope Change - July, 2009

Project Finish – April, 2011

Percent Complete - 95%

Budget

Total Project Funding: \$10,510K JCS Share - \$5,255K

CY10 Funding Received: \$1,860K

Funding for CY10: \$1,886K

Barriers

System energy density of present systems is too low

Cycle-life vs. useable energy in PHEV mode

Cost tradeoffs to meet performance targets

Partners

Johnson Controls and Saft

USABC Program Lead: Renata Arsenault

DOE Contract Manager: David Howell

Objectives

- Develop, build and test a prismatic cell for use in PHEV system design
- Develop Lithium-Ion PHEV Systems for 20 and 40 mile all-electric range applications.
- Optimize cell and system designs and hardware to meet program USABC goals and deliverables.

Collaborations

- Saft NMC Evaluations
- Entek Advanced Separator Development

Milestones

- Program scope change to prismatic cells and system (July, 2009) Approved
- Deliver baseline energy NMC cylindrical cells for testing validation (November, 2010) – Completed
- Deliver baseline prismatic cells for National Lab testing (November, 2010) Completed
- Deliver 20 and 40-mile thermal management design review summary (April, 2010) *In Progress*
- Deliver improved prismatic cells for National Lab testing (April, 2011) In Progress
- Deliver 20-mile capable PHEV hardware system (April, 2011) In Progress
- Deliver 40-mile capable PHEV system design study (April, 2011) In Progress

Approach

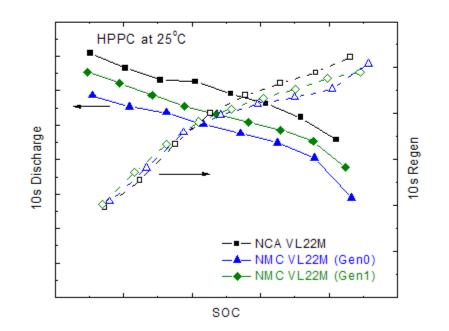
- The initial development leveraged existing Saft prismatic cell manufacturing equipment and technology. Saft manufacturing equipment is capable for winding and stacking electrode options.
- □ Initial capacity target and system BSF calculated to use 30 Ah cells.
- JCS used an existing electrode size and configuration to begin evaluation of the NMC cathode.
- □ JCS redesigned cell mechanics for the target prismatic cell.
- Advance materials suppliers were researched and appropriate materials were evaluated to meet performance expectations.
- System hardware was developed for a 20-mile capable bench-test product, which will be evaluated by the National Labs.
- The system development approach for the 40-mile design will utilize this same prismatic cell, connected in parallel/series and improved for volumetric efficiency and cost.

Technical Accomplishments and Progress

- Developed cell mechanics through several iterations to increase robustness and improve manufacturability.
- Developed applicable NMC chemistry through several generations to improve cell performance.
- Developed prismatic cell building capability in Milwaukee for both wound and stacked prismatic electrode configurations.
- Built, tested and delivered baseline NMC prismatic and cylindrical energy cells (November, 2010).
- Developed system design to build and test prototype multi-cell modules (September, 2010) and a prototype system (December, 2010).
- Using the cost model, demonstrated improved system cost and volume projections over the program duration.
- Delivered various summaries throughout the program.
- Developed and refined a Thermal simulation model for which projections were made. These simulations were later compared to actual results.
- Conducted and reported on cell abuse tolerance testing for overcharge nail penetration and propagation testing, all with successful results.

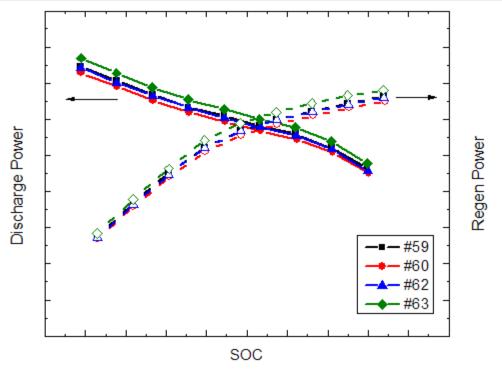
Hardware Deliverables

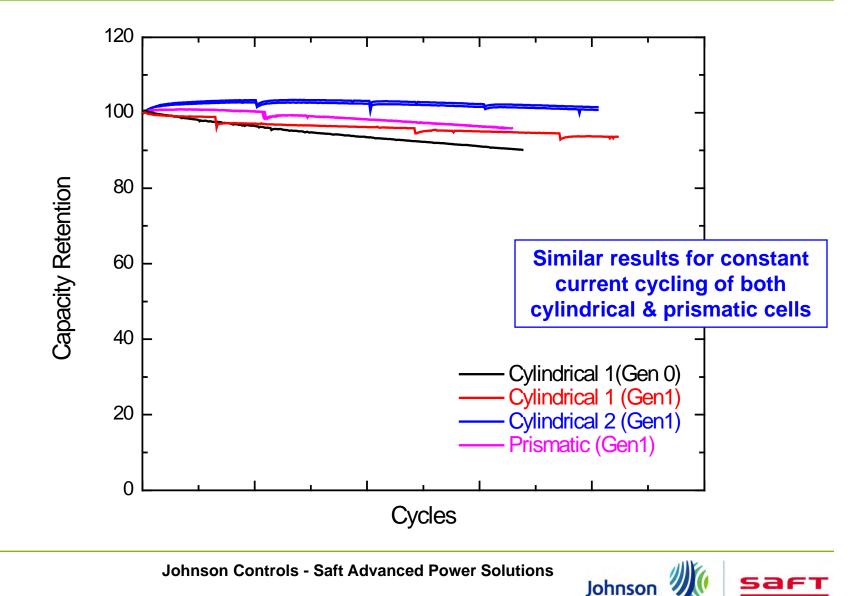
Prismatic Cell


20-mile PHEV System

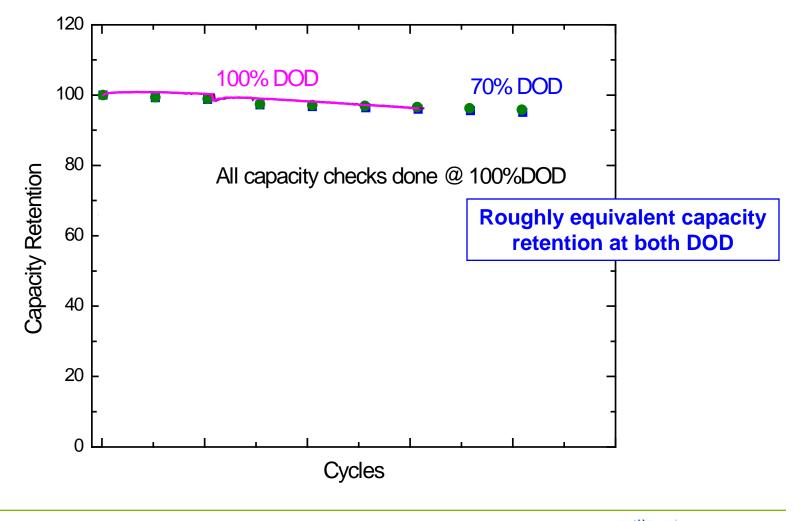
Cylindrical NMC Cell - Initial HPPC

Cell ID	Capacity (Ah)		Discharge Power	Cell Resistance (10s,
	1C_Rate	4C_Rate	(10s, 60%SOC) (W)	60%SOC) (mOhm)
NMC Gen1	20.9	21.0	1092	2.79
NMC Gen0	20.4	20.3	1030	2.90
NCA	21.4	19.3	1200	2.36

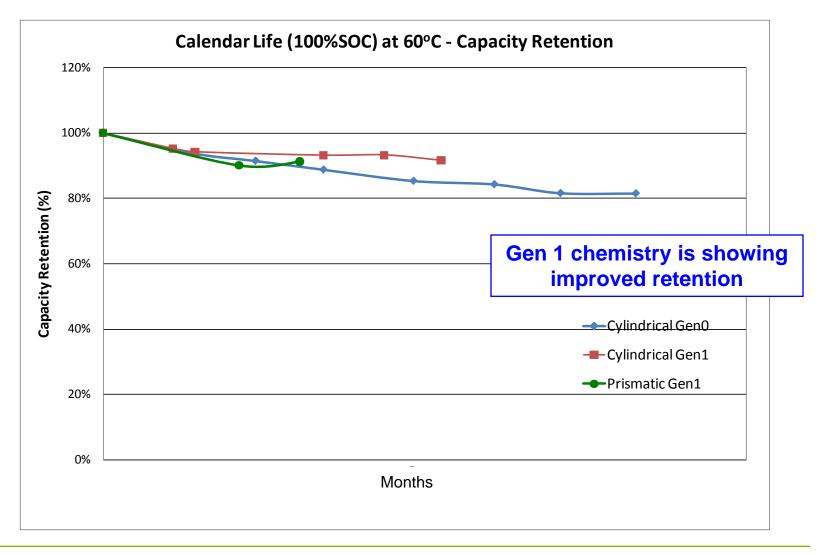



Prismatic NMC – Initial HPPC at 25°C

Cell ID	Capacity (Ah)		Discharge Power	Cell Resistance (10s,
	1C_Rate	4C_Rate	(10s, 50%SOC) (W)	50%SOC) (mOhm)
M0229059	22.6	21.9	1183	2.49
M0229060	22.5	21.8	1155	2.55
M0229062	22.5	21.9	1175	2.51
M0229063	22.6	21.9	1220	2.42

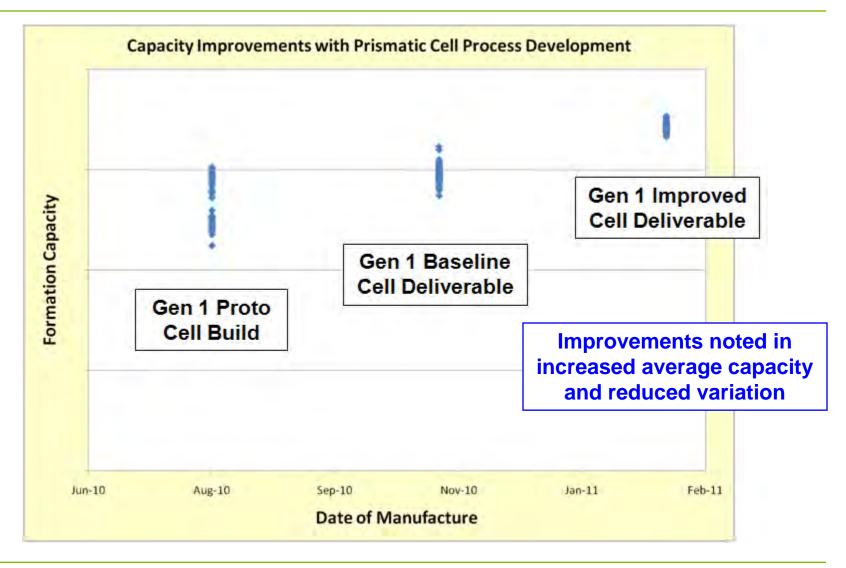


Prismatic Cell C/2 Cycling at 45°C (100%DOD) for Capacity Retention

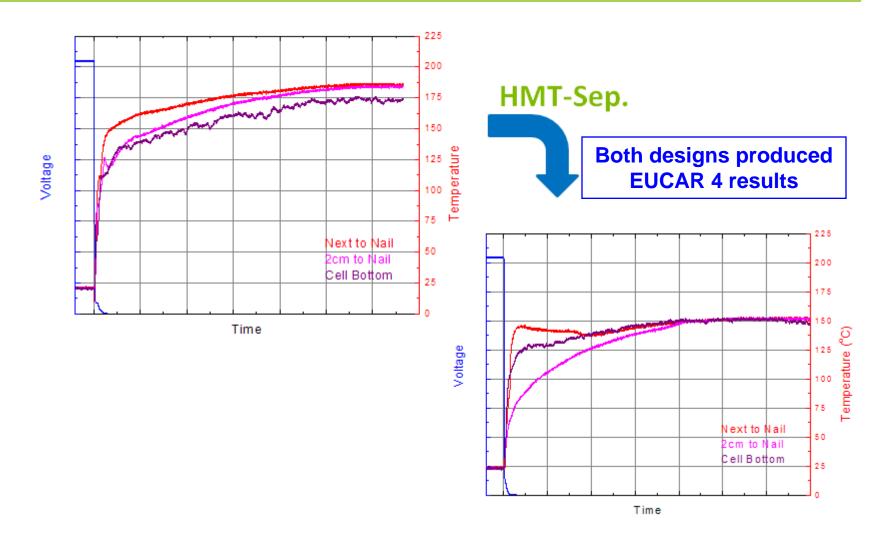

Controls

Johnson

Controls


Prismatic NMC Calendar Life at 60°C – Capacity Retention

Capacity Improvement by Build



		Nail	32A Overcharge
Wound	Improved Design	EUCAR 4	EUCAR 2
	Improved Design/HMT-Sep.	EUCAR 4	
Stack	Standard	EUCAR 4	
	Improved Design	EUCAR 4	

All testing performed per FreedomCAR Procedure Note: High Melting Temperature Separator (HMT)

Nail Penetration: Wound PL25M

<u>April, 2011</u>

- Build, test and deliver improved prismatic cells for multiple lab evaluations
- □ Build, test and deliver 20-mile capable systems for lab evaluations
- Develop and present a 40-mile design study for best cost and size
- □ Present performance summaries at final Quarterly Review

Summary

- Progress made for prismatic cell design and manufacturing to deliver NMC baseline cells with improved life and abuse tolerance from earlier proof-of-concept cells.
- Cell mechanics development for robust and low cost manufacturing
- As the system design has progressed, improvements have been presented and reported quarterly toward final delivery of the design study.
- Prismatic cell and system designs are meeting market demands and have attracted customers for JCS product development.
- Building product portfolio and manufacturing capability for prismatic energy and power cells

