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Piston ring–cylinder liner contact 

• Majority of the stroke is under EHL, and the traction is from 
shearing the lubricant film – a low-viscosity lubricant 
produces lower friction thus better fuel economy.  

• Top ring reversal region is under BL, and has wear issue –  
a high-viscosity lubricant provides better wear protection 

• Approach: anti-wear additives or wear-resistant 
surface engineering technologies to allow the 
usage of lower viscosity oils  
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• Ionic liquids are ‘room temperature molten salts’, composed of cations and 
anions, instead of neutral molecules. 

• Properties 
– Inherent polarity  
– High thermal stability and non-flammability 
– Low volatility 
– High flexibility of IL molecular design  
– Economical and environmentally friendly synthesis 

Introduction to ionic liquids 
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Program and technology development on 
Ionic Liquid Lubrication 

Our 
idea 

ORNL internal 
Proof-of-concept 

CRADA w/ GM Joint DOE FOA 
award w/ Shell 

2004 2005 2007 2009 2012 2013 2015 

Technology 
development 

Ammonium-
based ILs Lubricating 

mechanism 
Oil-miscible ILs 

As neat 
lubes 

As oil 
additives emulsions 

Low-viscosity, 
low PV-coeff ILs 

Breakthroughs U.S. patent,  
1st in this area  

6 journal papers +  
1 ORNL award 
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Ionic liquids for lubrication 

• ILs as neat lubricants or base stocks 
– High thermal stability (up to 500 oC) 
– High viscosity index (120-370) 
– Low elastohydrodynamic (EHL) and mixed friction due to low pressure-

viscosity coefficient 
– Wear protection at boundary lubrication (BL) by forming a tribo-film 
– Suitable for specialty bearing components 

• ILs as oil additives 
– Potential multi-functions: AW/EP, FM, corrosion inhibitor, detergent 
– Ashless/low sludge 
– Allow the use of lower viscosity oils for higher efficiency 
– Cost effective and easier to penetrate into the lubricant market 
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ORNL-developed phosphonium-based ILs 
as lubricant additives 

• Potential benefits 
– Improves durability and extended service intervals,  
– prevents the wear-induced efficiency loss and emission increase, and  
– more importantly, allows using less viscous oils for better engine efficiency. 

µ 

IL additives to prevent 
excessive wear due to 
a reduced viscosity 

Promising properties: 
• Mutual miscibility with hydrocarbon oils 
• Free of zinc, sulfur, and fluorine 
• Non-corrosive 
• High thermal stability 
• Excellent wettability 
• AW, FM, and other potential functions 
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Oil-miscibility 
• Most ILs have very limited oil-solubility (<<1%).  
• [P66614][DTMPP] (IL16) & [P66614][DEHP] (IL18) are fully 

miscible with all hydrocarbon oils tested, including 
both mineral oil- and PAO-based. 

– Hypothesis: 3D quaternary structures for both cation and 
anion w/ long hydrocarbon chains (high steric 
hindrance) to dilute the charge 

– But why oxygen donors necessary? 
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B. Yu, D.G. Bansal, J. Qu*, X. Sun, H. Luo, S. Dai, P.J. Blau, B.G. Bunting, 
G. Mordukhovich, D.J. Smolenski, Wear (2012) 289 (2012) 58–64.  
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       +      +                    +                   + 
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Viscosities of oil-IL blends 

• If a blend of multiple components is a single-phase solution (non-emulsion), the 
viscosity of the blend can be expressed by the Refutas equation [1]. 

 

• Good match between measured and calculated viscosities of the blends confirmed the 
ILs’ oil-miscibility [2]. 
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[1] Maples R.E. Petroleum Refinery Process Economics (2nd ed.). Pennwell Books (2000).  
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[2] B. Yu, D.G. Bansal, J. Qu*, X. Sun, H. Luo, S. Dai, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, Wear (2012) 289 (2012) 58–64.  
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High thermal stability and excellent 
wettability of oil-miscible PP-ILs 
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J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  

Fluid Contact angle on 
cast iron 

PAO 4 cSt base oil 13.0 

Mobil 1TM 5W-30 engine oil 9.0 

[P66614][DTMPP] (oil-miscible) 6.3 

[P66614][DEHP] (oil-miscible) 7.6 

[N888H][NTf2] (oil-insoluble) 33.9 

[BMIM][NTf2] (oil-insoluble) 41.7 

[P66614][DEHP] 

[P66614][DTMPP
] [P66614][DEHP] 
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No corrosion to iron or aluminum 
• Non-corrosive to cast iron or aluminum at either room or elevated temperatures 

 

[P66614][DTMPP] on grey 
cast iron surface after 60 days  
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Potentiodynamic polarization 
curve of [P66614][DEHP] showing 
active-passive behavior 

J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  

[P66614][DEHP] 
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Development of simulated rig tests 

• Lubricants: commercial and candidate 
engine oils 

• Materials: 
– Ring: cut from an actual piston top ring 
– Liner: either cut from an actual a cylinder 

liner or a cast iron coupon with simulated 
liner surface finish 

cross ring-on-liner             ring-on-flat    
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Two ASTM standard tests G 181 & 206 
developed at ORNL 

• Test parameters: 
– Temperature: 100 oC 
– Sliding speed: 0.2 m/s (10 Hz, 10 mm stroke) 
– Friction test: Stepping load from 20 to 240 N w/ 20 N 

increment for 1 min each 
– Wear test: 240 N load for 6 hours 

Friction test Wear test 

Wear 
quantification: 
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Anti-scuffing/anti-wear of [P66614][DEHP] 
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• When added into PAO base oil, [P66614][DEHP] eliminates scuffing and significantly 
reduces wear – this low-viscosity blend performing as well as the more viscous 5W30 oil. 

• When added into 5W30 engine oil, [P66614][DEHP] further reduces wear – suggesting a 
synergistic anti-wear effect with ZDDP. 

J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  
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Tribo-film on cast iron liner lubricated by 
PAO+5% [P66614][DEHP] 

P O Fe 

Ga from FIB  

Smoother than original surface due to 
chemical-mechanical polishing effect? 

J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  

Focused ion beam (FIB) 
TEM 
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Tribo-film by 5W-30 oil+5% [P66614][DEHP] 

A thicker tribo-film with 
• O, P, S, and Zn rich  
Suggesting a synergistic 
effect between IL and 
ZDDP in wear protection. 

Ga from FIB  

P O Fe Tribo-boundary film 

Deformed zone 

Ga S Zn 

J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  
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Hardness and modulus of tribo-films 

• Nanoindentation to characterize the hardness and modulus of tribo-films: 
2x25 indents, displacement control: 75 nm. 

• The tribo-film formed by ZDDP+[P66614][DEHP] is harder and stronger than 
the tribo-film formed by either alone – a synergy? 
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API/ILSAC limits IL’s concentration  

ILSAC GF-5 

[P66614][DEHP]: 
0.78-1.03 wt% 
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Effects of IL concentration 

• PAO 4 base oil + 1-5 wt% [P66614][DEHP]  
• Test type-1: cross ring-on-liner (Cross ROL), 

RT, 160 N, 10 Hz, 10 mm stroke, 1000 m 
• Test type-2: cross ring-on-liner (Cross ROL), 

100 oC, 240 N, 10 Hz, 10 mm stroke, 4320 m 
• Test type-: ring-on-flat liner (ROL), 100 oC, 

240 N, 10 Hz, 10 mm stroke, 4320 m 

Observation: 1 wt% of IL worked as well 
as 3 or 5 wt% in short-term bench testing. 
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Friction modifier functionality 

• When added into PAO base oil, [P66614][DEHP] reduces the friction at mixed 
lubrication – suggesting the potential functionality as a friction modifier. 
– No friction reduction for Mobil 1TM 5W30 or RP 0W10 engine oils, suggesting 

competition against existing friction modifiers. 
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PCS MTM2 Mini-Traction Machine  
– steel-on-steel pin-on-disc rolling/sliding  
• Temperature: 100 oC 
• Load: 75 N 
• Rolling speed: 0.1–3.2 m/s 
• Sliding/rolling ratio: 50% 
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Lubricating mechanisms of ionic liquids 
as multi-functional additives 
• Under mixed or EHL regime, function as friction modifier 

– First layer of anions absorbed onto the metal surface  
– Second layer of large-molecule cations attracted by the anions 
– Additional layers possible… 
– The layer-structured boundary lubricant film easier to shear  improving engine efficiency 

Metal surface 
Anti-wear tribo-film 

• Under boundary lubrication, function as anti-wear additive  
– Tribo-chemical reactions to form a protective tribo-film  improving engine durability 
– Allowing to use lower viscosity oils  improving engine efficiency 

+ 

Metal surface 

+ + + + + 

- - - - - - 
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IL tribo-film shows signs of corrosion-
resistance 

• Water droplets placed on the wear scars on cast iron liner surfaces in ambient. 
• Less rust on the surface lubricated by PAO+5% [P66614][DEHP] compared to those 

lubricated by PAO base or fully-formulated 10W-30 engine oil. 
 

• Hint-1: [P66614][DEHP] tribo-film has higher corrosion resistance than ZDDP tribo-film 
• Hint-2: [P66614][DEHP] may perform as corrosion-inhibitor… 

PAO 4 base oil PAO + 5% IL18 10W-30 engine oil  
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Thermo/pyrolysis analyses 

• Method: 1 mg of hexane extracted residue from impingers was analyzed. These are gas 
phase compounds. Anions in solution analyzed by capillary electrophoresis. 

• In helium 
– [P66614][DEHP] had very little decomposition at 200 oC. When decomposed at 400 

oC, electropherogram of residue pyrolysis showed no detectable anions, indicating 
all volatile phosphorous – ashless. 

– ZDDP largely decomposed at 200 oC with trace amounts when heated to 400 oC. 
Electropherogram of residue pyrolysis showed the presence of non-volatile phosphoric acid 
anion and unknown anion. 

• In oxygen 
– [P66614][DEHP] was stable below 200 oC but completely decomposed at 300 oC.  
– Decomposition products different than those in helium, but again are volatile 

phosphorous – ashless.  
– Olefin and paraffin compounds no longer exist but large number of carbonyl 

compounds suggest that the alkyl legs of IL were oxidized.  
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Chromatographs of ZDDP thermo/pyrolysis in 
helium 

Presentation_name 

Zinc  containing compounds 

Mineral oil  
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Chromatographs of [P66614][DEHP] 
thermo/pyrolysis in helium 

Presentation_name 

alkenes 

Phosphate functional group Phosphine functional group 
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Chromatographs of [P66614][DEHP] thermal 
decomposition in oxygen at 300 oC 

Presentation_name 

1 
2 3 4 

5 
6 7 

1) heptanone 
2) ethyl hexenal 
3) 2,2 dimethyl -1-hexanol 
4) tridecan-1-ol 
5) dodananol 
6) tetradecadien-3-one 
7) tetradecanone 

Phosphate functional group Phosphine functional group 

alkenes 



Jun Qu, ORNL 
26 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Exhaust analysis  

• Three fuels, base diesel, base diesel+ZDDP, and base diesel+[P66614][DEHP], 
evaluated in an single-cylinder research engine.  

• 81 mm quartz fiber filters for particulate collection, pre-fired at 650 °C in a furnace. 
• Sample gas exited the oven and flowed through impingers kept at ice water 

temperatures for water removal from the exhaust, and then to a dry gas meter. 

High load Medium load Low load 

PM filters  
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Chromatograph of thermo/pyrolysis of diesel+IL 
low load PM filter and hexane extracted residue 
from impinger 

Presentation_name 

 

No [P66614][DEHP] 
decomposition products 

were detected. 

Pyrolysis (400 C) Thermal 
desorption Diesel alkane peaks 

Pyrolysis 
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Summary 

• A group of oil-miscible ionic liquids has been developed by an ORNL-GM 
team as candidate lubricant additives with  
• Promising physical/chemical properties 

• Fully miscible/soluble with hydrocarbon base oils (mineral and synthetic) 
• Non-corrosive to ferrous or aluminum alloys 
• High-thermal stability 
• Excellent wettability 

• Potential multiple functionalities 
• Anti-scuffing/anti-wear,  
• Friction modifier,  
• and possibly corrosion inhibitor 

• Thermal decomposition products of IL all volatile phosphorous (ashless) and 
very different from those of ZDDP 

• Exhaust analysis showing no IL decomposition products in PM filter or residue 
• An oil-miscible IL is being formulated into an engine oil… 
• Emission catalyst poisoning and HLHT engine test are to be conducted… 
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Comments and Questions? 
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Backup slides 
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Anti-scuffing/anti-wear of [P66614][DTMPP] 

• When added into the 10W base oil, [P66614][DTMPP] eliminates scuffing and significantly 
reduces wear. 

• This low-viscosity blend performing as well as the more viscous 10W30 engine oil. 
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Tribo-film lubricated by 5W-30 engine oil 
Ga from FIB  

P O Fe 

Tribo-boundary film 

Deformed zone 

Ga S Zn 

Tribo-boundary film Ga from FIB  

A ZDDP-based tribo-film 
• S and Zn rich 
• P and O in lower-

concentrations 

J. Qu*, D.G. Bansal, B. Yu, J. Howe, H. Luo, S. Dai, H. Li, P.J. Blau, B.G. Bunting, G. 
Mordukhovich, D.J. Smolenski, “ACS Applied Materials & Interfaces 4 (2) (2012) 997–1002.  
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Nanoindentation to characterize the 
hardness and modulus of tribo-films 

• Nanoindentation: 2x25 indents, displacement control: 75 nm. 
• Wear scars generated at 100C in Mobil 1TM 5W30, 

PAO+3%IL18, and 5W30+5%IL18 

Before 
nanoindentation 

After 
nanoindentation 

10x10 µm scan 

Each of the 50 indents was visually 
examined - about half landed on ’bad’ 
spots and were removed in analysis. 

PAO+3%IL18 

PAO+3%IL
18 

PAO+3%IL
18 
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Chromatographs of the base low load hexane extracted residue 
thermo/pyrolysis (gas phase compounds) 

Presentation_name 

Thermal desorption 

Pyrolysis (400 C) 

Lube alkanes 
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