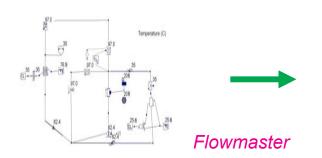


... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

An Investigation on an Ethylene Glycol/Water Nanofluid for Heavy Vehicle Cooling Applications

D. Singh, E. Timofeeva, W. Yu, D. France, and J. Routbort


Argonne National Laboratory

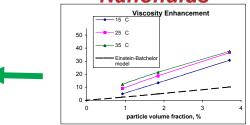
Poster Location: P-13

Rationale: Use of nanofluid with enhanced thermal properties has the potential to reduce (a) radiator frontal area, which in turn can reduce aerodynamic drag and hence increase fuel economy; and (b) coolant pumping power.

<u>Approach:</u> Conduct both a modeling and an experimental investigation to identify and demonstrate the viability of nanofluids for heavy vehicle cooling applications.

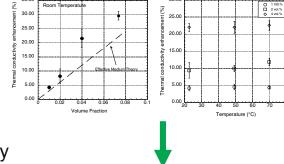
Simulation of 500 hp Truck Engine

Nanofluids with enhanced thermal properties have the potential for increased fuel savings

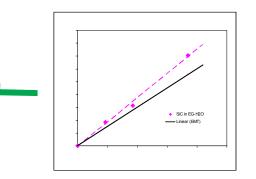

Outcome of Simulations

4 vol.% CuO in 50-50 water/ethylene glycol mixture

- 5% airside area reduction
- Reduced aerodynamic drag


2.5% increased fuel economy

Mechanical Effects of Nanofluids



Erosion of radiator material from nanofluids does not appear to be a factor

SiC/Water Nanofluid

SiC/Water/EG Nanofluid

