Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

P.I. – Dr. Steve Carlson Optodot Corporation

Project ID# ES136
Monday, May 14, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start October 2011
- End September 2014
- 5% complete

Barriers

- Cost reduced to \$300/kWh by 2014
- Energy density to 300 Wh/kg by 2015

Budget

- Total Project Funding
 - DOE \$2,249K
 - Contractor \$ 750K
- Funding for FY12 \$ 698K

Partners

- Madico, Inc. Electrode Stack Mfg.
- Dow Kokam, LLC Battery Mfg. and Testing
- University of Rhode Island Electrolyte
- Ashland Coating Solvent & Polymers

Three year Project

Project Long-term Objective

 Reduce the cost, weight, and/or volume of the cell's inactive components by at least 20%, and preferably by at least 40%, while maintaining cell performance

Project Immediate Objectives (Oct-11 to Mar-12)

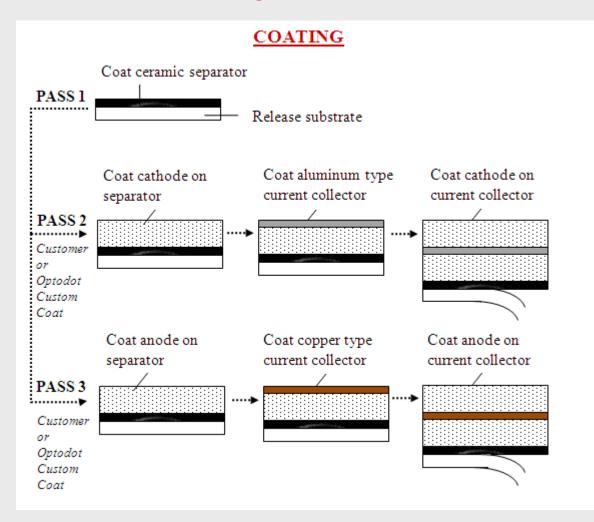
- Complete initial ceramic separator design, essential as the physical support layer of the future coated stack design & for electrolyte development
- Complete initial anode-current collector-anodeseparator-coated stack design

Milestones

Project Milestones for FY12 - Part 1 of 2

Month/Year	Milestone	Status – % Completion
Jan-12	Initial Ceramic Separator Design for Thickness and Porosity for use in rest of project work complete	100%
Jan-12	Initial Anode-Anode Current Collector-Anode-Separator Coated Stack Design complete	100%
April-12	Initial Cathode-Cathode Current Collector-Cathode-Separator Coated Stack Design complete	20%

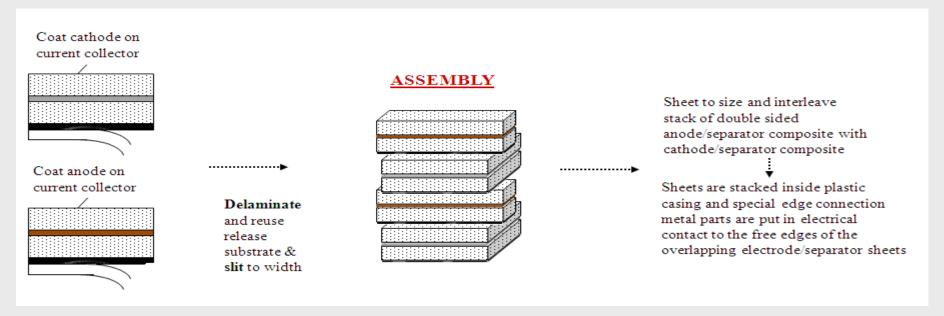
Milestones


Project Milestones for FY12 - Part 2 of 2

Month/Year	Milestone	Status – % Completion
April-12	Initial Low Cost Electrolyte Design for Lithium Salt complete	10%
June-12	Initial Current Collection & Termination Design complete	10%
June-12	Initial Low Cost Electrolyte Design for Solvents complete	10%

Approach

Battery Stack Manufacturing Process



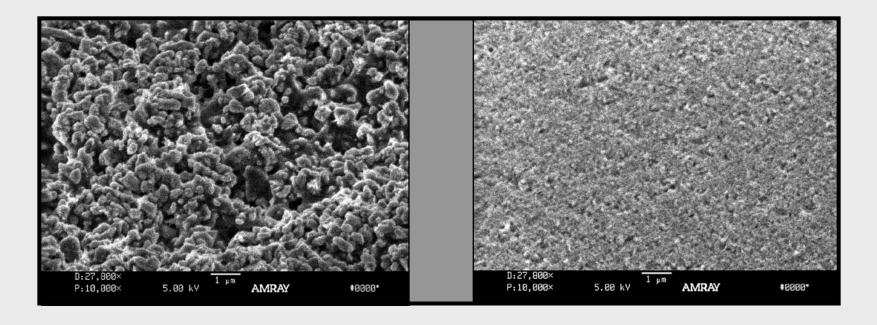
- Utilizes a roll-to-roll process
 - Lower cost
 - Higher efficiencies
 - Wider Widths
- Release substrate is removable, enabling interleaving of anode and cathode coated stacks

Approach

Battery Stack Manufacturing Process

- Lower cost and lighter inactive components
 - Nanopore nature of ceramic separator enables overcoating with electrodes
 - Thinner separator enables new low cost electrolytes
 - Thinner & lighter current collector layers
 - Lower cost cell termination and casing

Accomplishments

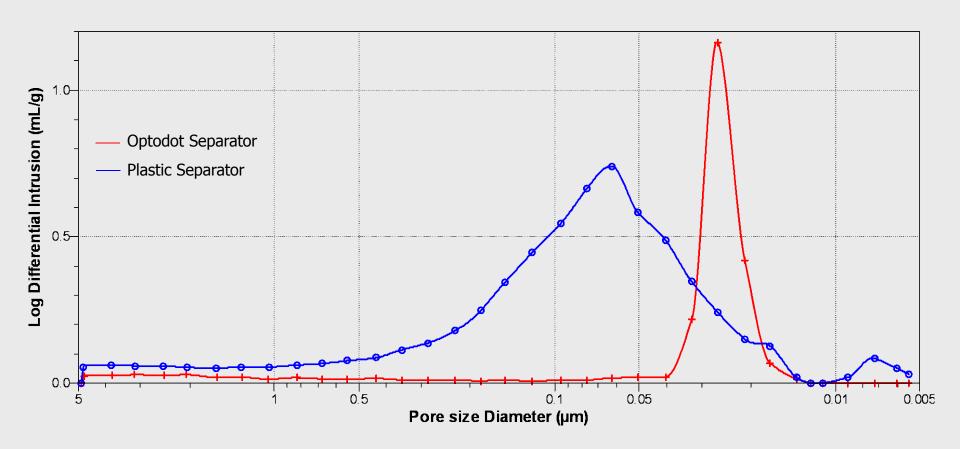

FY12 Accomplishments (Oct-11 - Mar-12)

- Cells with electrode/current collector/electrode/ separator stacks
 - Completed initial anode stack design
 - Further efforts in FY12 will include initial cathode stack, current collector layer & termination designs
- New lower cost electrolytes
 - Selected & manufactured 8 and 12 micron thick ceramic separator for use in coated stack & electrolyte development and with pore size diameters well below 100 nm
 - Further FY12 work will include electrolyte design

Accomplishments

FY12 Accomplishments (Oct-11 - Mar-12)

Conventional Ceramic Separator
 Layer with 0.5 micron pore diameter


 Optodot Ceramic Separator Layer with about 10 times smaller pores suitable for use in making electrode/ separator coated stacks

Accomplishments

FY12 Accomplishments (Oct-11 - Mar-12)

Log Differential Intrusion vs Pore size

Pore Size Distribution

Collaborations

Subcontractors

- Madico (industry) on mfg processes of mixing & coating of the ceramic separator
- Dow Kokam (industry) on electrode coatings
- URI (academic) on cell cycling testing on various ceramic separator designs & on electrolytes
- Ashland (industry) on NMP recycling & polymer selection for battery coatings

Future Work

Activities for FY2013

- Continue development and evaluations of new inactive components made with coated stack mfg process
 - GO/NO GO decision by Dec-12. Criteria is cost/performance of initial coated stack design.
- Deliver eight 2 Ah coated stack & control cells by Oct-12 for DOE testing
 - Provide cost analysis of these cells by Dec-12
- Evaluate design options for new current collector layers and cell termination
- Manufacturing scaleup & optimization on the coated stack design & process completed by Sep-13

Summary

- Meeting the at least 20% improved cost, volume and/or weight, as well as the performance requirements, for the key inactive components of Li-ion cells and developing a low cost next generation manufacturing process will help meet the DOE goals of cost reduction to \$270/kWh by 2017 for PHEVs and to \$150/kWh by 2020 for EVs.
- This will help to reduce U.S. dependence on foreign oil, reduce greenhouse gas emissions, and enable U.S. manufacturers to be competitive in the global market.
- Our 4 partners and subcontractors, Madico, Dow Kokam, URI, and Ashland, are providing coating and converting expertise and equipment, battery assembly and testing capability, electrolyte expertise, and polymer and NMP solvent expertise.
- Optodot and its manufacturing and business partner, Madico, are working closely together on the commercialization of this technology.